使用Python导出Excel图表以及到处为图片的方法
本篇讲下如何使用纯python代码将excel 中的图表导出为图片。这里需要使用的模块有win32com、pythoncom模块。
网上经查询有人已经写好的模块pyxlchart,具体代码如下:
from win32com.client import Dispatch import os import pythoncom class Pyxlchart(object): """ This class exports charts in an Excel Spreadsheet to the FileSystem win32com libraries are required. """ def __init__(self): pythoncom.CoInitialize() self.WorkbookDirectory = '' self.WorkbookFilename = '' self.GetAllWorkbooks = False self.SheetName = '' self.ChartName = '' self.GetAllWorkbookCharts = False self.GetAllWorksheetCharts = False self.ExportPath = '' self.ImageFilename = '' self.ReplaceWhiteSpaceChar = '_' self.ImageType = 'jpg' def __del__(self): pass def start_export(self): if self.WorkbookDirectory == '': return "WorkbookDirectory not set" else: self._export() def _export(self): """ Exports Charts as determined by the settings in class variabels. """ excel = Dispatch("excel.application") excel.Visible = False wb = excel.Workbooks.Open(os.path.join(self.WorkbookDirectory ,self.WorkbookFilename)) self._get_Charts_In_Worksheet(wb,self.SheetName,self.ChartName) wb.Close(False) excel.Quit() def _get_Charts_In_Worksheet(self,wb,worksheet = "", chartname = ""): if worksheet != "" and chartname != "": sht = self._change_sheet(wb,worksheet) cht = sht.ChartObjects(chartname) self._save_chart(cht) return if worksheet == "": for sht in wb.Worksheets: for cht in sht.ChartObjects(): if chartname == "": self._save_chart(cht) else: if chartname == cht.Name: self._save_chart(cht) else: sht = wb.Worksheets(worksheet) for cht in sht.ChartObjects(): if chartname == "": self._save_chart(cht) else: if chartname == cht.Name: self._save_chart(cht) def _change_sheet(self,wb,worksheet): try: return wb.Worksheets(worksheet) except: raise NameError('Unable to Select Sheet: ' + worksheet + ' in Workbook: ' + wb.Name) def _save_chart(self,chartObject): imagename = self._get_filename(chartObject.Name) savepath = os.path.join(self.ExportPath,imagename) print savepath chartObject.Chart.Export(savepath,self.ImageType) def _get_filename(self,chartname): """ Replaces white space in self.WorkbookFileName with the value given in self.ReplaceWhiteSpaceChar If self.ReplaceWhiteSpaceChar is an empty string then self.WorkBookFileName is left as is """ if self.ImageFilename == '': self.ImageFilename == chartname if self.ReplaceWhiteSpaceChar != '': chartname.replace(' ',self.ReplaceWhiteSpaceChar) if self.ImageFilename != "": return self.ImageFilename + "_" + chartname + "." + self.ImageType else: return chartname + '.' + self.ImageType if __name__ == "__main__": xl = Pyxlchart() xl.WorkbookDirectory = "\\\\maawtns01\\discipline\\procurement\\MATERIEL\\Raw Material\\Data Management\\Hawk" xl.WorkbookFilename = "Hawk Workability KPI.xlsm" xl.SheetName = "" xl.ImageFilename = "MyChart1" xl.ExportPath = "d:\\pycharts" xl.ChartName = "" xl.start_export() print "This file does not currently allow direct access" print "Please import PyXLChart and run start_export()"
这里还使用Excel vba将chart另存为图片篇中创建的chart_column.xlsx表,使用上面的模块的方法如下:
from pyxlchart import Pyxlchart xl = Pyxlchart() xl.WorkbookDirectory = "D:\\" xl.WorkbookFilename = "chart_column.xlsx" xl.SheetName = "" #xl.ImageFilename = "MyChart1" xl.ExportPath = "d:\\" xl.ChartName = "" xl.start_export()
由于有该表里有多张图表,所以上面未指定xl.ImageFilename ,使用示例如下:
Excel vba将chart另存为图片
python下使用xlswriter模块,可以轻松在excel 中创建图片,不过想实现将生成的chart图表导出为图片,在email 中导入图片的目标 。经网上查询未找到通过python代码将excel 中已经生成的图片导出为图片的方法,不过通过变通方法,使用excel 内的vba 宏却可以轻松将图片导出。
1、导出单张图片
python 创建chart图片代码:
#coding: utf-8 import xlsxwriter import random def get_num(): return random.randrange(0, 201, 2) workbook = xlsxwriter.Workbook('analyse_spider.xlsx') #创建一个Excel文件 worksheet = workbook.add_worksheet() #创建一个工作表对象 chart = workbook.add_chart({'type': 'column'}) #创建一个图表对象 #定义数据表头列表 title = [u'业务名称',u'星期一',u'星期二',u'星期三',u'星期四',u'星期五',u'星期六',u'星期日',u'平均流量'] buname= [u'运维之路',u'就要IT',u'baidu.com',u'361way.com',u'91it.org'] #定义频道名称 #定义5频道一周7天流量数据列表 data = [] for i in range(5): tmp = [] for j in range(7): tmp.append(get_num()) data.append(tmp) format=workbook.add_format() #定义format格式对象 format.set_border(1) #定义format对象单元格边框加粗(1像素)的格式 format_title=workbook.add_format() #定义format_title格式对象 format_title.set_border(1) #定义format_title对象单元格边框加粗(1像素)的格式 format_title.set_bg_color('#cccccc') #定义format_title对象单元格背景颜色为 #'#cccccc'的格式 format_title.set_align('center') #定义format_title对象单元格居中对齐的格式 format_title.set_bold() #定义format_title对象单元格内容加粗的格式 format_ave=workbook.add_format() #定义format_ave格式对象 format_ave.set_border(1) #定义format_ave对象单元格边框加粗(1像素)的格式 format_ave.set_num_format('0.00') #定义format_ave对象单元格数字类别显示格式 #下面分别以行或列写入方式将标题、业务名称、流量数据写入起初单元格,同时引用不同格式对象 worksheet.write_row('A1',title,format_title) worksheet.write_column('A2', buname,format) worksheet.write_row('B2', data[0],format) worksheet.write_row('B3', data[1],format) worksheet.write_row('B4', data[2],format) worksheet.write_row('B5', data[3],format) worksheet.write_row('B6', data[4],format) #定义图表数据系列函数 def chart_series(cur_row): worksheet.write_formula('I'+cur_row, \ '=AVERAGE(B'+cur_row+':H'+cur_row+')',format_ave) #计算(AVERAGE函数)频 #道周平均流量 chart.add_series({ 'categories': '=Sheet1!$B$1:$H$1', #将“星期一至星期日”作为图表数据标签(X轴) 'values': '=Sheet1!$B$'+cur_row+':$H$'+cur_row, #频道一周所有数据作 #为数据区域 'line': {'color': 'black'}, #线条颜色定义为black(黑色) 'name': '=Sheet1!$A$'+cur_row, #引用业务名称为图例项 }) for row in range(2, 7): #数据域以第2~6行进行图表数据系列函数调用 chart_series(str(row)) chart.set_size({'width': 577, 'height': 287}) #设置图表大小 chart.set_title ({'name': u'爬虫分析'}) #设置图表(上方)大标题 chart.set_y_axis({'name': 'count'}) #设置y轴(左侧)小标题 worksheet.insert_chart('A8', chart) #在A8单元格插入图表 workbook.close() #关闭Excel文档
由于这里只有一张图片,通过vba 代码很容易生成图片 。方法为,打开该excel 图表,通过alt + F11 快捷键打开宏编辑界面;打开VB编辑器的立即窗口:”视图“-”立即窗口“,或者使用快捷键"Ctrl + G" ,接着输入如下代码
activesheet.ChartObjects(1).Chart.Export "C:\chart.png"
按 " Enter " 键后,会在C盘生成上面的生成的chart图表。
二、导出多张图表
python代码如下:
#coding: utf-8 import xlsxwriter workbook = xlsxwriter.Workbook('chart_column.xlsx') worksheet = workbook.add_worksheet() bold = workbook.add_format({'bold': 1}) # 这是个数据table的列 headings = ['Number', 'Batch 1', 'Batch 2'] data = [ [2, 3, 4, 5, 6, 7], [10, 40, 50, 20, 10, 50], [30, 60, 70, 50, 40, 30], ] worksheet.write_row('A1', headings, bold) worksheet.write_column('A2', data[0]) worksheet.write_column('B2', data[1]) worksheet.write_column('C2', data[2]) ############################################ #创建一个图表,类型是column chart1 = workbook.add_chart({'type': 'column'}) # 配置series,这个和前面wordsheet是有关系的。 chart1.add_series({ 'name': '=Sheet1!$B$1', 'categories': '=Sheet1!$A$2:$A$7', 'values': '=Sheet1!$B$2:$B$7', }) # Configure a second series. Note use of alternative syntax to define ranges. chart1.add_series({ 'name': ['Sheet1', 0, 2], 'categories': ['Sheet1', 1, 0, 6, 0], 'values': ['Sheet1', 1, 2, 6, 2], }) # Add a chart title and some axis labels. chart1.set_title ({'name': 'Results of sample analysis'}) chart1.set_x_axis({'name': 'Test number'}) chart1.set_y_axis({'name': 'Sample length (mm)'}) # Set an Excel chart style. chart1.set_style(11) # Insert the chart into the worksheet (with an offset). worksheet.insert_chart('D2', chart1, {'x_offset': 25, 'y_offset': 10}) ####################################################################### # # Create a stacked chart sub-type. # chart2 = workbook.add_chart({'type': 'column', 'subtype': 'stacked'}) # Configure the first series. chart2.add_series({ 'name': '=Sheet1!$B$1', 'categories': '=Sheet1!$A$2:$A$7', 'values': '=Sheet1!$B$2:$B$7', }) # Configure second series. chart2.add_series({ 'name': '=Sheet1!$C$1', 'categories': '=Sheet1!$A$2:$A$7', 'values': '=Sheet1!$C$2:$C$7', }) # Add a chart title and some axis labels. chart2.set_title ({'name': 'Stacked Chart'}) chart2.set_x_axis({'name': 'Test number'}) chart2.set_y_axis({'name': 'Sample length (mm)'}) # Set an Excel chart style. chart2.set_style(12) # Insert the chart into the worksheet (with an offset). worksheet.insert_chart('D18', chart2, {'x_offset': 25, 'y_offset': 10}) ####################################################################### # # Create a percentage stacked chart sub-type. # chart3 = workbook.add_chart({'type': 'column', 'subtype': 'percent_stacked'}) # Configure the first series. chart3.add_series({ 'name': '=Sheet1!$B$1', 'categories': '=Sheet1!$A$2:$A$7', 'values': '=Sheet1!$B$2:$B$7', }) # Configure second series. chart3.add_series({ 'name': '=Sheet1!$C$1', 'categories': '=Sheet1!$A$2:$A$7', 'values': '=Sheet1!$C$2:$C$7', }) # Add a chart title and some axis labels. chart3.set_title ({'name': 'Percent Stacked Chart'}) chart3.set_x_axis({'name': 'Test number'}) chart3.set_y_axis({'name': 'Sample length (mm)'}) # Set an Excel chart style. chart3.set_style(13) # Insert the chart into the worksheet (with an offset). worksheet.insert_chart('D34', chart3, {'x_offset': 25, 'y_offset': 10}) workbook.close()
同一数据源上面创建了三种类型的图 ,由于有三张图,上面的导出一张图的方法肯定是不行了,这里打开宏,创建如下宏内容:
Sub exportimg() Dim XlsChart As ChartObject For Each XlsChart In Worksheets("Sheet1").ChartObjects XlsChart.Chart.Export Filename:="C:\" & XlsChart.Name & ".jpg", FilterName:="JPG" Next End Sub
该示例这里就不再截图,具体可以自行运行。

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

MySQL 有免费的社区版和收费的企业版。社区版可免费使用和修改,但支持有限,适合稳定性要求不高、技术能力强的应用。企业版提供全面商业支持,适合需要稳定可靠、高性能数据库且愿意为支持买单的应用。选择版本时考虑的因素包括应用关键性、预算和技术技能。没有完美的选项,只有最合适的方案,需根据具体情况谨慎选择。

文章介绍了MySQL数据库的上手操作。首先,需安装MySQL客户端,如MySQLWorkbench或命令行客户端。1.使用mysql-uroot-p命令连接服务器,并使用root账户密码登录;2.使用CREATEDATABASE创建数据库,USE选择数据库;3.使用CREATETABLE创建表,定义字段及数据类型;4.使用INSERTINTO插入数据,SELECT查询数据,UPDATE更新数据,DELETE删除数据。熟练掌握这些步骤,并学习处理常见问题和优化数据库性能,才能高效使用MySQL。

MySQL下载文件损坏,咋整?哎,下载个MySQL都能遇到文件损坏,这年头真是不容易啊!这篇文章就来聊聊怎么解决这个问题,让大家少走弯路。读完之后,你不仅能修复损坏的MySQL安装包,还能对下载和安装过程有更深入的理解,避免以后再踩坑。先说说为啥下载文件会损坏这原因可多了去了,网络问题是罪魁祸首,下载过程中断、网络不稳定都可能导致文件损坏。还有就是下载源本身的问题,服务器文件本身就坏了,你下载下来当然也是坏的。另外,一些杀毒软件过度“热情”的扫描也可能造成文件损坏。诊断问题:确定文件是否真的损坏

MySQL安装失败的原因主要有:1.权限问题,需以管理员身份运行或使用sudo命令;2.依赖项缺失,需安装相关开发包;3.端口冲突,需关闭占用3306端口的程序或修改配置文件;4.安装包损坏,需重新下载并验证完整性;5.环境变量配置错误,需根据操作系统正确配置环境变量。解决这些问题,仔细检查每个步骤,就能顺利安装MySQL。

MySQL数据库性能优化指南在资源密集型应用中,MySQL数据库扮演着至关重要的角色,负责管理海量事务。然而,随着应用规模的扩大,数据库性能瓶颈往往成为制约因素。本文将探讨一系列行之有效的MySQL性能优化策略,确保您的应用在高负载下依然保持高效响应。我们将结合实际案例,深入讲解索引、查询优化、数据库设计以及缓存等关键技术。1.数据库架构设计优化合理的数据库架构是MySQL性能优化的基石。以下是一些核心原则:选择合适的数据类型选择最小的、符合需求的数据类型,既能节省存储空间,又能提升数据处理速度

MySQL性能优化需从安装配置、索引及查询优化、监控与调优三个方面入手。1.安装后需根据服务器配置调整my.cnf文件,例如innodb_buffer_pool_size参数,并关闭query_cache_size;2.创建合适的索引,避免索引过多,并优化查询语句,例如使用EXPLAIN命令分析执行计划;3.利用MySQL自带监控工具(SHOWPROCESSLIST,SHOWSTATUS)监控数据库运行状况,定期备份和整理数据库。通过这些步骤,持续优化,才能提升MySQL数据库性能。

MySQL 可在无需网络连接的情况下运行,进行基本的数据存储和管理。但是,对于与其他系统交互、远程访问或使用高级功能(如复制和集群)的情况,则需要网络连接。此外,安全措施(如防火墙)、性能优化(选择合适的网络连接)和数据备份对于连接到互联网的 MySQL 数据库至关重要。

MySQL拒启动?别慌,咱来排查!很多朋友安装完MySQL后,发现服务死活启动不了,心里那个急啊!别急,这篇文章带你从容应对,揪出幕后黑手!读完后,你不仅能解决这个问题,还能提升对MySQL服务的理解,以及排查问题的思路,成为一名更强大的数据库管理员!MySQL服务启动失败,原因五花八门,从简单的配置错误到复杂的系统问题都有可能。咱们先从最常见的几个方面入手。基础知识:服务启动流程简述MySQL服务启动,简单来说,就是操作系统加载MySQL相关的文件,然后启动MySQL守护进程。这其中涉及到配置
