首页 后端开发 Python教程 举例讲解Python的Tornado框架实现数据可视化的教程

举例讲解Python的Tornado框架实现数据可视化的教程

Jun 10, 2016 pm 03:13 PM
python

所用拓展模块

    xlrd:

    Python语言中,读取Excel的扩展工具。可以实现指定表单、指定单元格的读取。
    使用前须安装。
    下载地址:https://pypi.python.org/pypi/xlrd
    解压后cd到解压目录,执行 python setup.py install 即可

    datetime:

    Python内置用于操作日期时间的模块

拟实现功能模块

    读xls文件并录入数据库

    根据年、月、日三个参数获取当天的值班情况

        饼状图(当天完成值班任务人数/当天未完成值班任务人数)

        瀑布图(当天所有值班人员的值班情况)

    根据年、月两个参数获取当月的值班情况

    根据年参数获取当年的值班情况

值班制度

    每天一共有6班:

    8:00 - 9:45
    9:45 - 11:20
    13:30 - 15:10
    15:10 - 17:00
    17:00 - 18:35
    19:00 - 22:00

    每个人每天最多值一班。

    仅值班时间及前后半个小时内打卡有效。

    上班、下班均须打卡,缺打卡则视为未值班。

分析Excel表格

我的指纹考勤机可以一次导出最多一个月的打卡记录。有一个问题是,这一个月可能横跨两个月,也可能横跨一年。比如:2015年03月21日-2015年04月20日、2014年12月15日-2015年01月05日。所以写处理方法的时候一定要注意这个坑。

导出的表格如图所示:

201552112445901.png (600×375)


    =。=看起来好像基本没人值班,对,就是这样。
    大家都好懒T。T
    Sign...

简单分析一下,

  •     考勤记录表是文件的第三个sheet
  •     第三行有起止时间
  •     第四行是所有日期的数字
  •     接下来每两行:第一行为用户信息;第二行为考勤记录

思路

决定用3个collection分别储存相关信息:

  1.     user:用户信息,包含id、name、dept
  2.     record:考勤记录,包含id(用户id)、y(年)、m(月)、d(日)、check(打卡记录)
  3.     duty:值班安排,包含id(星期数,例:1表示星期一)、list(值班人员id列表)、user_id:["start_time","end_time"](用户值班开始时间和结束时间)

读取xls文件,将新的考勤记录和新的用户存入数据库。

根据年月日参数查询对应record,查询当天的值班安排,匹配获得当天值班同学的考勤记录。将值班同学的打卡时间和值班时间比对,判断是否正常打卡,计算实际值班时长、实际值班百分比。

之后输出json格式数据,用echarts生成图表。

分析当月、当年的考勤记录同理,不过可能稍微复杂一些。

    所有的讲解和具体思路都放在源码注释里,请继续往下看源码吧~

源码

    main.py

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os.path

import tornado.auth
import tornado.escape
import tornado.httpserver
import tornado.ioloop
import tornado.options
import tornado.web
from tornado.options import define, options

import pymongo
import time
import datetime
import xlrd

define("port", default=8007, help="run on the given port", type=int)

class Application(tornado.web.Application):
  def __init__(self):
    handlers = [
      (r"/", MainHandler),
      (r"/read", ReadHandler),
      (r"/day", DayHandler),
    ]
    settings = dict(
      template_path=os.path.join(os.path.dirname(__file__), "templates"),
      static_path=os.path.join(os.path.dirname(__file__), "static"),
      debug=True,
      )
    conn = pymongo.Connection("localhost", 27017)
    self.db = conn["kaoqin"]
    tornado.web.Application.__init__(self, handlers, **settings)


class MainHandler(tornado.web.RequestHandler):
  def get(self):
    pass

class ReadHandler(tornado.web.RequestHandler):
  def get(self):
    #获取collection
    coll_record = self.application.db.record
    coll_user = self.application.db.user
    #读取excel表格
    table = xlrd.open_workbook('/Users/ant/Webdev/python/excel/data.xls')
    #读取打卡记录sheet
    sheet=table.sheet_by_index(2)
    #读取打卡月份范围
    row3 = sheet.row_values(2)
    m1 = int(row3[2][5:7])
    m2 = int(row3[2][18:20])
    #设置当前年份
    y = int(row3[2][0:4])
    #设置当前月份为第一个月份
    m = m1
    #读取打卡日期范围
    row4 = sheet.row_values(3)
    #初始化上一天
    lastday = row4[0]
    #遍历第四行中的日期
    for d in row4:
      #如果日期小于上一个日期
      #说明月份增大,则修改当前月份为第二个月份
      if d < lastday:
        m = m2
        #如果当前两个月份分别为12月和1月
        #说明跨年了,所以年份 +1
        if m1 == 12 and m2 == 1:
          y = y + 1
      #用n计数,范围为 3 到(总行数/2+1)
      #(总行数/2+1)- 3 = 总用户数
      #即遍历所有用户
      for n in range(3, sheet.nrows/2+1):
        #取该用户的第一行,即用户信息行
        row_1 = sheet.row_values(n*2-2)
        #获取用户id
        u_id = row_1[2]
        #获取用户姓名
        u_name = row_1[10]
        #获取用户部门
        u_dept = row_1[20]
        #查询该用户
        user = coll_user.find_one({"id":u_id})
        #如果数据库中不存在该用户则创建新用户
        if not user:
          user = dict()
          user['id'] = u_id
          user['name'] = u_name
          user['dept'] = u_dept
          coll_user.insert(user)
        #取该用户的第二行,即考勤记录行
        row_2 = sheet.row_values(n*2-1)
        #获取改当前日期的下标
        idx = row4.index(d)
        #获取当前用户当前日期的考勤记录
        check_data = row_2[idx]
        #初始化空考勤记录列表
        check = list()
        #5个字符一组,遍历考勤记录并存入考勤记录列表
        for i in range(0,len(check_data)/5):
          check.append(check_data[i*5:i*5+5])
        #查询当前用户当天记录
        record = coll_record.find_one({"y":y, "m":m, "d":d, "id":user['id']})
        #如果记录存在则更新记录
        if record:
          for item in check:
            #将新的考勤记录添加进之前的记录
            if item not in record['check']:
              record['check'].append(item)
              coll_record.save(record)
        #如果记录不存在则插入新纪录
        else:
          record = {"y":y, "m":m, "d":d, "id":user['id'], "check":check}
          coll_record.insert(record)

登录后复制

class DayHandler(tornado.web.RequestHandler):
  def get(self):
    #获取年月日参数
    y = self.get_argument("y",None)
    m = self.get_argument("m",None)
    d = self.get_argument("d",None)
    #判断参数是否设置齐全
    if y and m and d:
      #将参数转换为整型数,方便使用
      y = int(y)
      m = int(m)
      d = int(d)
      #获取当天所有记录
      coll_record = self.application.db.record
      record = coll_record.find({"y":y, "m":m, "d":d})
      #获取当天为星期几
      weekday = datetime.datetime(y,m,d).strftime("%w")
      #获取当天值班表
      coll_duty = self.application.db.duty
      duty = coll_duty.find_one({"id":int(weekday)})
      #初始化空目标记录(当天值班人员记录)
      target = list()
      #遍历当天所有记录
      for item in record:
        #当该记录的用户当天有值班任务时,计算并存入target数组
        if int(item['id']) in duty['list']:
          #通过用户id获取该用户值班起止时间
          start = duty[item['id']][0]
          end = duty[item['id']][1]
          #计算值班时长/秒
          date1 = datetime.datetime(y,m,d,int(start[:2]),int(start[-2:]))
          date2 = datetime.datetime(y,m,d,int(end[:2]),int(end[-2:]))
          item['length'] = (date2 - date1).seconds
          #初始化实际值班百分比
          item['per'] = 0
          #初始化上下班打卡时间
          item['start'] = 0
          item['end'] = 0
          #遍历该用户打卡记录
          for t in item['check']:
            #当比值班时间来得早
            if t < start:
              #计算时间差
              date1 = datetime.datetime(y,m,d,int(start[:2]),int(start[-2:]))
              date2 = datetime.datetime(y,m,d,int(t[:2]),int(t[-2:]))
              dif = (date1 - date2).seconds
              #当打卡时间在值班时间前半小时内
              if dif <= 1800:
                #上班打卡成功
                item['start'] = start
            elif t < end:
              #如果还没上班打卡
              if not item['start']:
                #则记录当前时间为上班打卡时间
                item['start'] = t
              else:
                #否则记录当前时间为下班打卡时间
                item['end'] = t
            else:
              #如果已经上班打卡
              if item['start']:
                #计算时间差
                date1 = datetime.datetime(y,m,d,int(end[:2]),int(end[-2:]))
                date2 = datetime.datetime(y,m,d,int(t[:2]),int(t[-2:]))
                dif = (date1 - date2).seconds
                #当打卡时间在值班时间后半小时内
                if dif <= 1800:
                  #下班打卡成功
                  item['end'] = end
          #当上班下班均打卡
          if item['start'] and item['end']:
            #计算实际值班时长
            date1 = datetime.datetime(y,m,d,int(item['start'][:2]),int(item['start'][-2:]))
            date2 = datetime.datetime(y,m,d,int(item['end'][:2]),int(item['end'][-2:]))
            dif = (date2 - date1).seconds
            #计算(实际值班时长/值班时长)百分比
            item['per'] = int(dif/float(item['length']) * 100)
          else:
            #未正常上下班则视为未值班
            item['start'] = 0
            item['end'] = 0
          #将记录添加到target数组中
          target.append(item)
      #输出数据
      self.render("index.html",
        target = target
        )


def main():
  tornado.options.parse_command_line()
  http_server = tornado.httpserver.HTTPServer(Application())
  http_server.listen(options.port)
  tornado.ioloop.IOLoop.instance().start()


if __name__ == "__main__":
  main()

  index.html

{
{% for item in target %}
  {
   'id':{{ item['id'] }},
   'start':{{ item['start'] }},
   'end':{{ item['end'] }},
   'length':{{ item['length'] }}, 
   'per':{{ item['per'] }}
   }
{% end %}
}

登录后复制

最后

暂时只写到读文件和查询某天值班情况,之后会继续按照之前的计划把这个小应用写完的。

因为涉及到一堆小伙伴的隐私,所以没有把测试文件发上来。不过如果有想实际运行看看的同学可以跟我说,我把文件发给你。

可能用到的一条数据库插入语句:db.duty.insert({"id":5,"list":[1,2],1:["19:00","22:00"],2:["19:00","22:00"]})

希望对像我一样的beginner们有帮助!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

PHP和Python:解释了不同的范例 PHP和Python:解释了不同的范例 Apr 18, 2025 am 12:26 AM

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

在PHP和Python之间进行选择:指南 在PHP和Python之间进行选择:指南 Apr 18, 2025 am 12:24 AM

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

Python vs. JavaScript:学习曲线和易用性 Python vs. JavaScript:学习曲线和易用性 Apr 16, 2025 am 12:12 AM

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

vscode怎么在终端运行程序 vscode怎么在终端运行程序 Apr 15, 2025 pm 06:42 PM

在 VS Code 中,可以通过以下步骤在终端运行程序:准备代码和打开集成终端确保代码目录与终端工作目录一致根据编程语言选择运行命令(如 Python 的 python your_file_name.py)检查是否成功运行并解决错误利用调试器提升调试效率

vs code 可以在 Windows 8 中运行吗 vs code 可以在 Windows 8 中运行吗 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上运行,但体验可能不佳。首先确保系统已更新到最新补丁,然后下载与系统架构匹配的VS Code安装包,按照提示安装。安装后,注意某些扩展程序可能与Windows 8不兼容,需要寻找替代扩展或在虚拟机中使用更新的Windows系统。安装必要的扩展,检查是否正常工作。尽管VS Code在Windows 8上可行,但建议升级到更新的Windows系统以获得更好的开发体验和安全保障。

PHP和Python:深入了解他们的历史 PHP和Python:深入了解他们的历史 Apr 18, 2025 am 12:25 AM

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

vscode 扩展是否是恶意的 vscode 扩展是否是恶意的 Apr 15, 2025 pm 07:57 PM

VS Code 扩展存在恶意风险,例如隐藏恶意代码、利用漏洞、伪装成合法扩展。识别恶意扩展的方法包括:检查发布者、阅读评论、检查代码、谨慎安装。安全措施还包括:安全意识、良好习惯、定期更新和杀毒软件。

visual studio code 可以用于 python 吗 visual studio code 可以用于 python 吗 Apr 15, 2025 pm 08:18 PM

VS Code 可用于编写 Python,并提供许多功能,使其成为开发 Python 应用程序的理想工具。它允许用户:安装 Python 扩展,以获得代码补全、语法高亮和调试等功能。使用调试器逐步跟踪代码,查找和修复错误。集成 Git,进行版本控制。使用代码格式化工具,保持代码一致性。使用 Linting 工具,提前发现潜在问题。

See all articles