Python面向对象编程中的类和对象学习教程
Python中一切都是对象。类提供了创建新类型对象的机制。这篇教程中,我们不谈类和面向对象的基本知识,而专注在更好地理解Python面向对象编程上。假设我们使用新风格的python类,它们继承自object父类。
定义类
class 语句可以定义一系列的属性、变量、方法,他们被该类的实例对象所共享。下面给出一个简单类定义:
class Account(object): num_accounts = 0 def __init__(self, name, balance): self.name = name self.balance = balance Account.num_accounts += 1 def del_account(self): Account.num_accounts -= 1 def deposit(self, amt): self.balance = self.balance + amt def withdraw(self, amt): self.balance = self.balance - amt def inquiry(self): return self.balance
类定义引入了以下新对象:
类对象
实例对象
方法对象
类对象
程序执行过程中遇到类定义时,就会创建新的命名空间,命名空间包含所有类变量和方法定义的名称绑定。注意该命名空间并没有创建类方法可以使用的新局部作用域,因此在方法中访问变量需要全限定名称。上一节的Account类演示了该特性;尝试访问num_of_accounts变量的方法需要使用全限定名称Account.num_of_accounts,否则,如果没有在__init__方法中使用全限定名称,会引发如下错误:
class Account(object): num_accounts = 0 def __init__(self, name, balance): self.name = name self.balance = balance num_accounts += 1 def del_account(self): Account.num_accounts -= 1 def deposit(self, amt): self.balance = self.balance + amt def withdraw(self, amt): self.balance = self.balance - amt def inquiry(self): return self.balance >>> acct = Account('obi', 10) Traceback (most recent call last): File "python", line 1, in <module> File "python", line 9, in __init__ UnboundLocalError: local variable 'num_accounts' referenced before assignment
类定义执行的最后,会创建一个类对象。在进入类定义之前有效的那个作用域现在被恢复了,同时类对象被绑定到类定义头的类名上。
先偏离下话题,你可能会问如果创建的类是对象,那么类对象的类是什么呢?。与一切都是对象的python哲学一致,类对象确实有个类,即python新风格类中的type类。
>>> type(Account) <class 'type'>
让你更迷惑一点,Account类型的类型是type。type类是个元类,用于创建其他类,我们稍后教程中再介绍。
类对象支持属性引用和实例化。属性通过标准的点语法引用,即对象后跟句点,然后是属性名:obj.name。有效的属性名是类对象创建后类命名空间中出现的所有变量和方法名。例如:
>>> Account.num_accounts >>> 0 >>> Account.deposit >>> <unbound method Account.deposit>
类实例化使用函数表示法。实例化会像普通函数一样无参数调用类对象,如下文中的Account类:
>>> Account()
类对象实例化之后,会返回实例对象,如果类中定义了__init__方法,就会调用,实例对象作为第一个参数传递过去。这个方法会进行用户自定义的初始化过程,比如实例变量的初始化。Account类为例,账户name和balance会被设置,实例对象的数目增加1。
实例对象
如果类对象是饼干切割刀,饼干就是实例化类对象的结果。实例对象上的全部有效操作为对属性、数据和方法对象的引用。
方法对象
方法对象和函数对象类似。如果x是Account类的实例,x.deposit就是方法对象的例子。方法定义中有个附加参数,self。self指向类实例。为什么我们需要把实例作为参数传递给方法?方法调用能最好地说明:
>>> x = Account() >>> x.inquiry() 10
实例方法调用时发生了什么?你应该注意到x.inquiry()调用时没有参数,虽然方法定义包含self参数。那么这个参数到底发生了什么?
特殊之处在于方法所作用的对象被作为函数的第一个参数传递过去。在我们的例子中,对x.inquiry()的调用等价于Account.f(x)。一般,调用n参数的方法等同于将方法的作用对象插入到第一个参数位置。
python教程上讲:
当引用的实例属性不是数据属性时,就会搜索类。如果名称表示一个合法的函数对象,实例对象和函数对象将会被打包到一个抽象对象,即方法对象中。包含参数列表的方法对象被调用时,将会根据实例对象和参数列表创建一个新的参数列表,然后函数对象将会使用新的参数列表被调用。
这适用于所有的实例方法对象,包括__init__方法。self参数其实不是一个关键字,任何有效的参数名都可以使用,如下Account类定义所示:
class Account(object): num_accounts = 0 def __init__(obj, name, balance): obj.name = name obj.balance = balance Account.num_accounts += 1 def del_account(obj): Account.num_accounts -= 1 def deposit(obj, amt): obj.balance = obj.balance + amt def withdraw(obj, amt): obj.balance = obj.balance - amt def inquiry(obj): return obj.balance >>> Account.num_accounts >>> 0 >>> x = Account('obi', 0) >>> x.deposit(10) >>> Account.inquiry(x) >>> 10
静态和类方法
类中定义的方法默认由实例调用。但是,我们也可以通过对应的@staticmethod和@classmethod装饰器来定义静态或类方法。
静态方法
静态方式是类命名空间中的普通函数。引用类的静态方法返回的是函数类型,而不是非绑定方法类型:
class Account(object): num_accounts = 0 def __init__(self, name, balance): self.name = name self.balance = balance Account.num_accounts += 1 def del_account(self): Account.num_accounts -= 1 def deposit(self, amt): self.balance = self.balance + amt def withdraw(self, amt): self.balance = self.balance - amt def inquiry(self): return "Name={}, balance={}".format(self.name, self.balance) @staticmethod def type(): return "Current Account" >>> Account.deposit <unbound method Account.deposit> >>> Account.type <function type at 0x106893668>
使用@staticmethod装饰器来定义静态方法,这些方法不需要self参数。静态方法可以更好地组织与类相关的代码,也可以在子类中被重写。
类方法
类方法由类自身来调用,而不是实例。类方法使用@classmethod装饰器定义,作为第一个参数被传递给方法的是类而不是实例。
import json class Account(object): num_accounts = 0 def __init__(self, name, balance): self.name = name self.balance = balance Account.num_accounts += 1 def del_account(self): Account.num_accounts -= 1 def deposit(self, amt): self.balance = self.balance + amt def withdraw(self, amt): self.balance = self.balance - amt def inquiry(self): return "Name={}, balance={}".format(self.name, self.balance) @classmethod def from_json(cls, params_json): params = json.loads(params_json) return cls(params.get("name"), params.get("balance")) @staticmethod def type(): return "Current Account"
类方法一个常见的用法是作为对象创建的工厂。假如Account类的数据格式有很多种,比如元组、json字符串等。由于Python类只能定义一个__init__方法,所以类方法在这些情形中就很方便。以上文Account类为例,我们想根据一个json字符串对象来初始化一个账户,我们定义一个类工厂方法from_json,它读取json字符串对象,解析参数,根据参数创建账户对象。另一个类实例的例子是dict.fromkeys 方法,它从一组键和值序列中创建dict对象。
Python特殊方法
有时我们希望自定义类。这需要改变类对象创建和初始化的方法,或者对某些操作提供多态行为。多态行为允许定制在类定义中某些如+等python操作的自身实现。Python的特殊方法可以做到这些。这些方法一般都是__*__形式,其中*表示方法名。如__init__和__new__来自定义对象创建和初始化,__getitem__、__get__、__add__、__sub__来模拟python内建类型,还有__getattribute__、__getattr__等来定制属性访问。只有为数不多的特殊方法,我们讨论一些重要的特殊方法来做个简单理解,python文档有全部方法的列表。
进行对象创建的特殊方法
新的类实例通过两阶段过程创建,__new__方法创建新实例,__init__初始化该实例。用户已经很熟悉__init__方法的定义;但用户很少定义__new__方法,但是如果想自定义类实例的创建,也是可以的。
属性访问的特殊方法
我们可以通过实现以下方法来定制类实例的属性访问。
class Account(object): num_accounts = 0 def __init__(self, name, balance): self.name = name self.balance = balance Account.num_accounts += 1 def del_account(self): Account.num_accounts -= 1 def __getattr__(self, name): return "Hey I dont see any attribute called {}".format(name) def deposit(self, amt): self.balance = self.balance + amt def withdraw(self, amt): self.balance = self.balance - amt def inquiry(self): return "Name={}, balance={}".format(self.name, self.balance) @classmethod def from_dict(cls, params): params_dict = json.loads(params) return cls(params_dict.get("name"), params_dict.get("balance")) @staticmethod def type(): return "Current Account" x = Account('obi', 0)
__getattr__(self, name)__:这个方法只有当name既不是实例属性也不能在对象的类继承链中找到时才会被调用。这个方法应当返回属性值或者引发AttributeError异常。例如,如果x是Account类的实例,尝试访问不存在的属性将会调用这个方法。
>>> acct = Account("obi", 10) >>> acct.number Hey I dont see any attribute called number
注意如果 __getattr__引用不存在的实例属性,可能会发生死循环,因为__getattr__方法不断被调用。
2.__setattr__(self, name, value)__:这个方法当属性赋值发生时调用。__setattr__将会把值插入到实例属性字典中,而不是使用self.name=value,因为它会导致递归调用的死循环。
3.__delattr__(self, name)__:del obj发生时调用。
4.__getattribute__(self, name)__:这个方法会被一直调用以实现类实例的属性访问。
类型模拟的特殊方法
对某些类型,Python定义了某些特定语法;比如,列表和元组的元素可以通过索引表示法来访问,数值可以通过+操作符来进行加法等等。我们可以创建自己的使用这些特殊语法的类,python解释器遇到这些特殊语法时就会调用我们实现的方法。我们在下面用一个简单的例子来演示这个特性,它模拟python列表的基本用法。
class CustomList(object): def __init__(self, container=None): # the class is just a wrapper around another list to # illustrate special methods if container is None: self.container = [] else: self.container = container def __len__(self): # called when a user calls len(CustomList instance) return len(self.container) def __getitem__(self, index): # called when a user uses square brackets for indexing return self.container[index] def __setitem__(self, index, value): # called when a user performs an index assignment if index <= len(self.container): self.container[index] = value else: raise IndexError() def __contains__(self, value): # called when the user uses the 'in' keyword return value in self.container def append(self, value): self.container.append(value) def __repr__(self): return str(self.container) def __add__(self, otherList): # provides support for the use of the + operator return CustomList(self.container + otherList.container)
上面,CustomList是个真实列表的简单包装器。我们为了演示实现了一些自定义方法:
__len__(self):对CustomList实例调用len()函数时被调用。
>>> myList = CustomList() >>> myList.append(1) >>> myList.append(2) >>> myList.append(3) >>> myList.append(4) >>> len(myList) 4
2.__getitem__(self, value):提供CustomList类实例的方括号索引用法支持:
>>> myList = CustomList() >>> myList.append(1) >>> myList.append(2) >>> myList.append(3) >>> myList.append(4) >>> myList[3] 4
3.__setitem__(self, key, value):当对CustomList类实例上self[key]赋值时调用。
>>> myList = CustomList() >>> myList.append(1) >>> myList.append(2) >>> myList.append(3) >>> myList.append(4) >>> myList[3] = 100 4 >>> myList[3] 100
4.__contains__(self, key):成员检测时调用。如果包含该项就返回true,否则false。
>>> myList = CustomList() >>> myList.append(1) >>> myList.append(2) >>> myList.append(3) >>> myList.append(4) >>> 4 in myList True
5.__repr__(self):当用print打印self时调用,将会打印self的对象表示。
>>> myList = CustomList() >>> myList.append(1) >>> myList.append(2) >>> myList.append(3) >>> myList.append(4) >>> print myList [1, 2, 3, 4]
6.__add__(self, otherList):使用+操作符来计算两个CustomList实例相加时调用。
>>> myList = CustomList() >>> otherList = CustomList() >>> otherList.append(100) >>> myList.append(1) >>> myList.append(2) >>> myList.append(3) >>> myList.append(4) >>> myList + otherList + otherList [1, 2, 3, 4, 100, 100]
上面的例子演示了如何通过定义某些特殊类方法来定制类行为。可以在Python文档中查看这些自定义方法的完整列表。在接下来的教程中,我们会将特殊方法放到一起来讨论,并解释描述符这个在python面向对象编程中广泛使用的重要功能。

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

MySQL 有免费的社区版和收费的企业版。社区版可免费使用和修改,但支持有限,适合稳定性要求不高、技术能力强的应用。企业版提供全面商业支持,适合需要稳定可靠、高性能数据库且愿意为支持买单的应用。选择版本时考虑的因素包括应用关键性、预算和技术技能。没有完美的选项,只有最合适的方案,需根据具体情况谨慎选择。

文章介绍了MySQL数据库的上手操作。首先,需安装MySQL客户端,如MySQLWorkbench或命令行客户端。1.使用mysql-uroot-p命令连接服务器,并使用root账户密码登录;2.使用CREATEDATABASE创建数据库,USE选择数据库;3.使用CREATETABLE创建表,定义字段及数据类型;4.使用INSERTINTO插入数据,SELECT查询数据,UPDATE更新数据,DELETE删除数据。熟练掌握这些步骤,并学习处理常见问题和优化数据库性能,才能高效使用MySQL。

MySQL安装失败的原因主要有:1.权限问题,需以管理员身份运行或使用sudo命令;2.依赖项缺失,需安装相关开发包;3.端口冲突,需关闭占用3306端口的程序或修改配置文件;4.安装包损坏,需重新下载并验证完整性;5.环境变量配置错误,需根据操作系统正确配置环境变量。解决这些问题,仔细检查每个步骤,就能顺利安装MySQL。

MySQL下载文件损坏,咋整?哎,下载个MySQL都能遇到文件损坏,这年头真是不容易啊!这篇文章就来聊聊怎么解决这个问题,让大家少走弯路。读完之后,你不仅能修复损坏的MySQL安装包,还能对下载和安装过程有更深入的理解,避免以后再踩坑。先说说为啥下载文件会损坏这原因可多了去了,网络问题是罪魁祸首,下载过程中断、网络不稳定都可能导致文件损坏。还有就是下载源本身的问题,服务器文件本身就坏了,你下载下来当然也是坏的。另外,一些杀毒软件过度“热情”的扫描也可能造成文件损坏。诊断问题:确定文件是否真的损坏

MySQL 可在无需网络连接的情况下运行,进行基本的数据存储和管理。但是,对于与其他系统交互、远程访问或使用高级功能(如复制和集群)的情况,则需要网络连接。此外,安全措施(如防火墙)、性能优化(选择合适的网络连接)和数据备份对于连接到互联网的 MySQL 数据库至关重要。

MySQL数据库性能优化指南在资源密集型应用中,MySQL数据库扮演着至关重要的角色,负责管理海量事务。然而,随着应用规模的扩大,数据库性能瓶颈往往成为制约因素。本文将探讨一系列行之有效的MySQL性能优化策略,确保您的应用在高负载下依然保持高效响应。我们将结合实际案例,深入讲解索引、查询优化、数据库设计以及缓存等关键技术。1.数据库架构设计优化合理的数据库架构是MySQL性能优化的基石。以下是一些核心原则:选择合适的数据类型选择最小的、符合需求的数据类型,既能节省存储空间,又能提升数据处理速度

MySQL拒启动?别慌,咱来排查!很多朋友安装完MySQL后,发现服务死活启动不了,心里那个急啊!别急,这篇文章带你从容应对,揪出幕后黑手!读完后,你不仅能解决这个问题,还能提升对MySQL服务的理解,以及排查问题的思路,成为一名更强大的数据库管理员!MySQL服务启动失败,原因五花八门,从简单的配置错误到复杂的系统问题都有可能。咱们先从最常见的几个方面入手。基础知识:服务启动流程简述MySQL服务启动,简单来说,就是操作系统加载MySQL相关的文件,然后启动MySQL守护进程。这其中涉及到配置

MySQL性能优化需从安装配置、索引及查询优化、监控与调优三个方面入手。1.安装后需根据服务器配置调整my.cnf文件,例如innodb_buffer_pool_size参数,并关闭query_cache_size;2.创建合适的索引,避免索引过多,并优化查询语句,例如使用EXPLAIN命令分析执行计划;3.利用MySQL自带监控工具(SHOWPROCESSLIST,SHOWSTATUS)监控数据库运行状况,定期备份和整理数据库。通过这些步骤,持续优化,才能提升MySQL数据库性能。
