Yii 1开发日记,yii开发日记
Yii 1开发日记,yii开发日记
用yii 1实现后台的搜索功能,效果如下图:
1.模型中:
<span> 1</span> <span>public</span> <span>function</span><span> search() </span><span> 2</span> <span> { </span><span> 3</span> <span> 4</span> <span>$criteria</span> = <span>new</span><span> CDbCriteria; </span><span> 5</span> <span>//</span><span>独立高级搜索</span> <span> 6</span> <span>if</span>(<span>isset</span>( <span>$_GET</span>['goods'<span>]) ) { </span><span> 7</span> <span>//</span><span>商品货号</span> <span> 8</span> <span>if</span> (<span>isset</span>(<span>$_GET</span>['goods']['goods_sn']) && <span>$_GET</span>['goods']['goods_sn'] != ""<span>) </span><span> 9</span> <span> { </span><span>10</span> <span>$criteria</span>->compare('goods_sn',<span>$_GET</span>['goods']['goods_sn'], <span>true</span><span> ); </span><span>11</span> <span> } </span><span>12</span> <span>//</span><span>商品名称</span> <span>13</span> <span>if</span> (<span>isset</span>(<span>$_GET</span>['goods']['goods_name']) && <span>$_GET</span>['goods']['goods_name'] != ""<span>) </span><span>14</span> <span> { </span><span>15</span> <span>$criteria</span>->compare('goods_name',<span>$_GET</span>['goods']['goods_name'], <span>true</span><span>); </span><span>16</span> <span> } </span><span>17</span> <span>//</span><span>商品分类</span> <span>18</span> <span>if</span> (<span>isset</span>(<span>$_GET</span>['goods']['cat_id']) && <span>$_GET</span>['goods']['cat_id'] != ""<span>) </span><span>19</span> <span> { </span><span>20</span> <span>$criteria</span>->compare('cat_id',<span>$_GET</span>['goods']['cat_id'], <span>true</span><span>); </span><span>21</span> <span> } </span><span>22</span> <span>//</span><span>是否上架</span> <span>23</span> <span>if</span> (<span>isset</span>(<span>$_GET</span>['goods']['is_on_sale']) && <span>$_GET</span>['goods']['is_on_sale'] != ""<span>) </span><span>24</span> <span> { </span><span>25</span> <span>$criteria</span>->compare('is_on_sale',<span>$_GET</span>['goods']['is_on_sale'<span>]); </span><span>26</span> <span> } </span><span>27</span> <span>//</span><span>是否精品</span> <span>28</span> <span>if</span> (<span>isset</span>(<span>$_GET</span>['goods']['is_best']) && <span>$_GET</span>['goods']['is_best'] != ""<span>) </span><span>29</span> <span> { </span><span>30</span> <span>$criteria</span>->compare('is_best',<span>$_GET</span>['goods']['is_best'<span>]); </span><span>31</span> <span> } </span><span>32</span> <span>//</span><span>是否新品</span> <span>33</span> <span>if</span> (<span>isset</span>(<span>$_GET</span>['goods']['is_new']) && <span>$_GET</span>['goods']['is_new'] != ""<span>) </span><span>34</span> <span> { </span><span>35</span> <span>$criteria</span>->compare('is_new',<span>$_GET</span>['goods']['is_new'<span>]); </span><span>36</span> <span> } </span><span>37</span> <span>//</span><span>是否热销</span> <span>38</span> <span>if</span> (<span>isset</span>(<span>$_GET</span>['goods']['is_hot']) && <span>$_GET</span>['goods']['is_hot'] != ""<span>) </span><span>39</span> <span> { </span><span>40</span> <span>$criteria</span>->compare('is_hot',<span>$_GET</span>['goods']['is_hot'<span>]); </span><span>41</span> <span> } </span><span>42</span> <span>43</span> <span> } </span><span>44</span> <span>return</span> <span>new</span> CActiveDataProvider(<span>$this</span>, <span>array</span><span>( </span><span>45</span> 'criteria'=><span>$criteria</span> <span>46</span> <span> )); </span><span>47</span> }
2.控制器中:
<span>$model</span>=<span>new</span> B2cGoods('search');
表示在model中启用模型中的search作为搜索。
3.视图中:
<div <span>class</span>="well"> <div <span>class</span>="search-box"> <form <span>class</span>="form-inline" method="get" action=""><br /> <span>//指定form表单提交的页面,很重要</span> <input type='hidden' name='r' value='B2CShop/b2cGoods/goodsList/id/<?php echo $id ?>'> <div <span>class</span>="form-group"> <<span>input name</span>="goods[goods_sn]"<span> type</span>="text" <span>class</span>="form-control"<span> style</span>="width:140px;"<span> placeholder </span>= "商品货号"<span> value</span>=<?php <span>echo</span> <span>$_GET</span>['goods']['goods_sn'] ; ?> > </div>&<span>nbsp; </span><div <span>class</span>="form-group"> <<span>input name</span>="goods[goods_name]"<span> type</span>="text" <span>class</span>="form-control"<span> style</span>="width:140px;"<span> placeholder </span>= "商品名称"<span> value</span>=<?php <span>echo</span> <span>$_GET</span>['goods']['goods_name'] ; ?> > </div> &<span>nbsp; </span><div <span>class</span>="form-group"> <?php <span>echo</span> CHtml::dropDownList( "goods[cat_id]" , <span>$_GET</span>['goods']['cat_id'] ,<span> B2cCategory</span>::listData( <span>$id</span> ) , <span>array</span>( "class"=>"form-control" , 'empty'=>'请选择类型...', 'encode' => <span>false</span>, "style"=>"width:140px") ); ?> </div> &<span>nbsp; </span><div <span>class</span>="checkbox"> <label>上架 </span><<span>input type</span>="checkbox"<span> name</span>="goods[is_on_sale]"<span> style</span>="width: 24px;"<span> value</span>="1"<br /> <span>//实现checkbox,刷新页面保持原状态</span> <?php <span>echo</span> <span>$_GET</span>['goods']['is_on_sale']?'checked="checked"':'' ?> > </label> </div> &<span>nbsp; </span><div <span>class</span>="checkbox"> <label>精品 </span><<span>input type</span>="checkbox"<span> name</span>="goods[is_best]"<span> style</span>="width: 24px;"<span> value</span>="1" <?php <span>echo</span> <span>$_GET</span>['goods']['is_best']?'checked="checked"':'' ?> > </label> </div> &<span>nbsp; </span><div <span>class</span>="checkbox"> <label>新品 </span><<span>input type</span>="checkbox"<span> name</span>="goods[is_new]"<span> style</span>="width: 24px;"<span> value</span>="1" <?php <span>echo</span> <span>$_GET</span>['goods']['is_new']?'checked="checked"':'' ?> > </label> </div> &<span>nbsp; </span><div <span>class</span>="checkbox"> <label>热销 </span><<span>input type</span>="checkbox"<span> name</span>="goods[is_hot]"<span> style</span>="width: 24px;"<span> value</span>="1" <?php <span>echo</span> <span>$_GET</span>['goods']['is_hot']?'checked="checked"':'' ?> > </label> </div> <button type="submit" <span>class</span>="btn btn-default"><span <span>class</span>="glyphicon glyphicon-search"></span> 搜 索</button> </form> </div> </div>
这里需要注意的一点是实现checkbox,保持原状态,echo $_GET['goods']['is_hot']?'checked="checked"':'' ?>,即用php判断是否有值。

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

FP8和更低的浮点数量化精度,不再是H100的“专利”了!老黄想让大家用INT8/INT4,微软DeepSpeed团队在没有英伟达官方支持的条件下,硬生生在A100上跑起FP6。测试结果表明,新方法TC-FPx在A100上的FP6量化,速度接近甚至偶尔超过INT4,而且拥有比后者更高的精度。在此基础之上,还有端到端的大模型支持,目前已经开源并集成到了DeepSpeed等深度学习推理框架中。这一成果对大模型的加速效果也是立竿见影——在这种框架下用单卡跑Llama,吞吐量比双卡还要高2.65倍。一名

写在前面项目链接:https://nianticlabs.github.io/mickey/给定两张图片,可以通过建立图片之间的对应关系来估计它们之间的相机姿态。通常,这些对应关系是二维到二维的,而我们估计的姿态在尺度上是不确定的。一些应用,例如随时随地实现即时增强现实,需要尺度度量的姿态估计,因此它们依赖于外部的深度估计器来恢复尺度。本文提出了MicKey,这是一个关键点匹配流程,能够够预测三维相机空间中的度量对应关系。通过学习跨图像的三维坐标匹配,我们能够在没有深度测试的情况下推断出度量相对

概述LLaMA-3(LargeLanguageModelMetaAI3)是由Meta公司开发的大型开源生成式人工智能模型。它在模型结构上与前一代LLaMA-2相比没有大的变动。LLaMA-3模型分为不同规模的版本,包括小型、中型和大型,以适应不同的应用需求和计算资源。小型模型参参数规模为8B,中型模型参参数规模为70B,而大型模型参参数规模则达到400B。然而在训练中,目标是实现多模态、多语言的功能,预计结果将与GPT4/GPT4V相当。安装OllamaOllama是一个开源的大型语言模型(LL

为了将大型语言模型(LLM)与人类的价值和意图对齐,学习人类反馈至关重要,这能确保它们是有用的、诚实的和无害的。在对齐LLM方面,一种有效的方法是根据人类反馈的强化学习(RLHF)。尽管RLHF方法的结果很出色,但其中涉及到了一些优化难题。其中涉及到训练一个奖励模型,然后优化一个策略模型来最大化该奖励。近段时间已有一些研究者探索了更简单的离线算法,其中之一便是直接偏好优化(DPO)。DPO是通过参数化RLHF中的奖励函数来直接根据偏好数据学习策略模型,这样就无需显示式的奖励模型了。该方法简单稳定
