目录
01 总  述
02 背  景
03 新框架
04 实验可视化
首页 科技周边 人工智能 YoloCS:有效降低特征图空间复杂度

YoloCS:有效降低特征图空间复杂度

Jun 12, 2024 pm 05:49 PM
特征 卷积

YoloCS:有效降低特征图空间复杂度

论文地址:YOLOCS: Object Detection based on Dense Channel Compression for Feature Spatial Solidification (arxiv.org)

01 总  述

在今天分享中,研究者检查了在特征纯化和梯度反向传播过程中信道特征和卷积核之间的关联,重点是网络内的前向和反向传播。因此,研究者提出了一种称为密集通道压缩的特征空间固化方法。根据该方法的核心概念,引入了两个用于骨干网络和头部网络的创新模块:用于特征空间固化的密集通道压缩(DCFS)和非对称多级压缩解耦头部(ADH)。当集成到YOLOv5模型中时,这两个模块表现出非凡的性能,从而产生了一个被称为YOLOCS的改进模型。

YoloCS:有效降低特征图空间复杂度  YoloCS:有效降低特征图空间复杂度

在MSCOCO数据集上评估,大、中、小YOLOCS模型的AP分别为50.1%、47.6%和42.5%。在保持与YOLOv5模型的推理速度相似的情况下,大、中、小YOLOCS模型分别达到了1.1%、2.3%和5.2%的优势超过YOLOv5的AP。

02 背  景

近年来,目标检测技术在计算机视觉领域受到了广泛关注。其中,基于单发多框算法的目标检测技术(Single Shot Multi Box Detector,简称SSD)和基于卷积神经网络的目标检测技术(Convolutional Neural Networks,简称CNN)是两种最常用的目标检测技术。然而,由于单发多框算法的精度较低,而基于卷积神经网络的目标检测技术的计算复杂度较高,因此,寻找一种高效且精度较高的目标检测技术成为了当前研究的热点之一。

YoloCS:有效降低特征图空间复杂度

Dense Channel Compression (DCC) 是一种新型的卷积神经网络压缩技术,它通过对卷积神经网络中的特征图进行空间固化,从而实现对网络参数的压缩和加速。然而,DCC技术在目标检测领域的应用尚未得到充分的研究。 Dense Channel Compression (DCC) 技术旨在通过减少网络参数的数量来提高计算效率。具体而言,DCC通过对卷积层的输出特征图进行通道压缩,从而减少卷积层的参数数量。这种压缩技术可以通过删除冗余和不必要的通道,或者使用低秩分解等方法来实现。 尽管DCC技术在图像分类任务上

YoloCS:有效降低特征图空间复杂度

因此,提出了一种基于Dense Channel Compression的目标检测技术,命名为YOLOCS(YOLO with Dense Channel Compression)。YOLOCS技术将DCC技术与YOLO(You Only Look Once)算法相结合,实现了对目标检测的高效且精度较高的处理。具体来说,YOLOCS技术通过DCC技术对特征图进行空间固化,从而实现了对目标标位置的精确定位;同时,YOLOCS技术利用YOLO算法的单发多框算法特点,实现了对目标标别分类的快速计算。

03 新框架

  • Dense Channel Compression for Feature Spatial Solidification Structure (DCFS)

YoloCS:有效降低特征图空间复杂度

在提出的方法中(上图(c))中,研究者不仅解决了网络宽度和深度之间的平衡问题,还通过3×3卷积压缩了来自不同深度层的特征,在输出和融合特征之前将通道数量减少了一半。这种方法使研究者能够在更大程度上细化来自不同层的特征输出,从而在融合阶段增强特征的多样性和有效性。

此外,来自每一层的压缩特征都带有更大的卷积核权重(3×3),从而有效地扩展了输出特征的感受野。将这种方法称为特征空间固化的密集通道压缩。用于特征空间固化的密集通道压缩背后的基本原理依赖于利用较大的卷积核来促进通道压缩。该技术具有两个关键优点:首先,它扩展了前向传播过程中特征感知的感受域,从而确保了区域相关的特征细节被纳入,以最大限度地减少整个压缩阶段的特征损失。其次,误差反向传播过程中误差细节的增强允许更准确的权重调整。

为了进一步阐明这两个优点,使用具有两种不同核类型(1×1和3×3)的卷积来压缩两个通道,如下图:

YoloCS:有效降低特征图空间复杂度

DCFS的网络结构如下图所示。采用三层瓶颈结构,在网络前向传播的过程中逐渐压缩信道。半通道3×3卷积应用于所有分支,然后是批处理归一化(BN)和激活函数层。随后,使用1×1卷积层来压缩输出特征通道,以匹配输入特征通道。

YoloCS:有效降低特征图空间复杂度

  • Asymmetric Multi-level Channel Compression Decoupled Head (ADH)

为了解决YOLOX模型中的解耦头问题,研究者进行了一系列的研究和实验。研究结果揭示了解耦头部结构的利用与相关损失函数之间的逻辑相关性。具体而言,对于不同的任务,应根据损失计算的复杂性调整解耦头的结构。此外,当将解耦的头部结构应用于各种任务时,由于最终输出维度的差异,将前一层的特征通道(如下图)直接压缩为任务通道可能会导致显著的特征损失。这反过来又会对模型的整体性能产生不利影响。

YoloCS:有效降低特征图空间复杂度

此外,当考虑提出的用于特征空间固化的密集通道压缩方法时,直接减少最终层中的通道数量以匹配输出通道可能会导致前向传播过程中的特征丢失,从而降低网络性能。同时,在反向传播的背景下,这种结构可能会导致次优误差反向传播,阻碍梯度稳定性的实现。为了应对这些挑战,引入了一种新的解耦头,称为非对称多级通道压缩解耦头(如下图(b))。

YoloCS:有效降低特征图空间复杂度

具体而言,研究者深化了专用于目标评分任务的网络路径,并使用3个卷积来扩展该任务的感受野和参数数量。同时,沿着通道维度压缩每个卷积层的特征。该方法不仅有效地减轻了与目标评分任务相关的训练难度,提高了模型性能,而且大大减少了解耦头部模块的参数和GFLOP,从而显著提高了推理速度。此外,使用1卷积层来分离分类和边界框任务。这是因为对于匹配的正样本,与两个任务相关联的损失相对较小,因此避免了过度扩展。这种方法大大降低了解耦头中的参数和GFLOP,最终提高了推理速度。

04 实验可视化

Ablation Experiment on MS-COCO val2017

YoloCS:有效降低特征图空间复杂度

Comparison of YOLOCS, YOLOX and YOLOv5- r6.1[7] in terms of AP on MS-COCO 2017 test-dev

YoloCS:有效降低特征图空间复杂度

YoloCS:有效降低特征图空间复杂度


以上是YoloCS:有效降低特征图空间复杂度的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1673
14
CakePHP 教程
1429
52
Laravel 教程
1333
25
PHP教程
1278
29
C# 教程
1257
24
如何使用AGNO框架构建多模式AI代理? 如何使用AGNO框架构建多模式AI代理? Apr 23, 2025 am 11:30 AM

在从事代理AI时,开发人员经常发现自己在速度,灵活性和资源效率之间进行权衡。我一直在探索代理AI框架,并遇到了Agno(以前是Phi-

如何在SQL中添加列? - 分析Vidhya 如何在SQL中添加列? - 分析Vidhya Apr 17, 2025 am 11:43 AM

SQL的Alter表语句:动态地将列添加到数据库 在数据管理中,SQL的适应性至关重要。 需要即时调整数据库结构吗? Alter表语句是您的解决方案。本指南的详细信息添加了Colu

OpenAI以GPT-4.1的重点转移,将编码和成本效率优先考虑 OpenAI以GPT-4.1的重点转移,将编码和成本效率优先考虑 Apr 16, 2025 am 11:37 AM

该版本包括三种不同的型号,GPT-4.1,GPT-4.1 MINI和GPT-4.1 NANO,标志着向大语言模型景观内的特定任务优化迈进。这些模型并未立即替换诸如

Andrew Ng的新简短课程 Andrew Ng的新简短课程 Apr 15, 2025 am 11:32 AM

解锁嵌入模型的力量:深入研究安德鲁·NG的新课程 想象一个未来,机器可以完全准确地理解和回答您的问题。 这不是科幻小说;多亏了AI的进步,它已成为R

火箭发射模拟和分析使用Rocketpy -Analytics Vidhya 火箭发射模拟和分析使用Rocketpy -Analytics Vidhya Apr 19, 2025 am 11:12 AM

模拟火箭发射的火箭发射:综合指南 本文指导您使用强大的Python库Rocketpy模拟高功率火箭发射。 我们将介绍从定义火箭组件到分析模拟的所有内容

Google揭示了下一个2025年云上最全面的代理策略 Google揭示了下一个2025年云上最全面的代理策略 Apr 15, 2025 am 11:14 AM

双子座是Google AI策略的基础 双子座是Google AI代理策略的基石,它利用其先进的多模式功能来处理和生成跨文本,图像,音频,视频和代码的响应。由DeepM开发

您可以自己3D打印的开源人形机器人:拥抱面孔购买花粉机器人技术 您可以自己3D打印的开源人形机器人:拥抱面孔购买花粉机器人技术 Apr 15, 2025 am 11:25 AM

“超级乐于宣布,我们正在购买花粉机器人,以将开源机器人带到世界上,” Hugging Face在X上说:“自从Remi Cadene加入Tesla以来,我们已成为开放机器人的最广泛使用的软件平台。

DeepCoder-14b:O3-Mini和O1的开源竞赛 DeepCoder-14b:O3-Mini和O1的开源竞赛 Apr 26, 2025 am 09:07 AM

在AI社区的重大发展中,Agentica和AI共同发布了一个名为DeepCoder-14B的开源AI编码模型。与OpenAI等封闭源竞争对手提供代码生成功能

See all articles