首页 科技周边 人工智能 大模型+蒙特卡洛树搜索,一招让LLaMa-3 8B奥数水平直逼GPT-4

大模型+蒙特卡洛树搜索,一招让LLaMa-3 8B奥数水平直逼GPT-4

Jun 18, 2024 pm 04:46 PM
工程 MCTSr

通过算法层面的创新,未来大语言模型做数学题的水平会不断地提高。

这几天,17 岁中专生姜萍在 2024 阿里巴巴全球数学竞赛预选赛中取得全球第 12 名的新闻刷了屏。而同时,AI 挑战赛的成绩显示,在所有 563 支 AI 参赛队伍中,最高分 34 分,平均分 18 分,赶上了人类选手平均水平。

AI 参与数学竞赛的主要短板是逻辑推理能力弱,证明题很难拿到完整得分点。这也是 GPT-4、LLaMA 等当前大语言模型(LLM)在需要策略和逻辑推理的任务中面临的重大挑战。

其中的一个重要障碍是输出的准确性和可信度,尤其是在需要保证精度的数学上下文中,LLM 在推理时往往产生幻觉。输出结果表面上看似合理,但实际上不相关或事实不确,最终导致不合理的推理过程。

自然像自我提炼这样的重写技术有助于解决这种偏向,但依然可能导致现实世界复杂的数学问题产生误导性或错误的结果。

因此,为了应对这些挑战,来自复旦大学、上海 AI Lab 的研究者提出了 MCT Self-Refine(MCTSr),将 LLM 与蒙特卡洛树搜索(MCTS)算法相结合,并重点提高 LLM 在复杂数学推理任务(比如奥数竞赛题)中的表现。

MCTS是一种决策工具,广泛应用于人工智能中需要战略规划的场景,通常用于游戏和复杂的问题解决环境。本文通过将MCTS的系统探索能力与LLM的Self-Refine和Self-Evaluation能力相结合,旨在创建一个更强大的框架来应对当前LLM难以解决的复杂推理任务。

大模型+蒙特卡洛树搜索,一招让LLaMa-3 8B奥数水平直逼GPT-4

  • 论文地址:https://arxiv.org/pdf/2406.07394

  • 项目地址:https://github.com/trotsky1997/MathBlackBox

不过,在将 MCTS 与 LLM 集成过程中存在一些技术挑战。传统的 MCTS 策略可能与 LLM 输出的随机性和生成性不太吻合,后者通常涉及无限、连续的潜在动作空间。这种不一致需要在 MCTS 框架内采用定制的期望计算和反向传播方法,以更好地适应 LLM 的特有属性。

此外,研究者还引入了一种动态剪枝策略,它结合了改进的置信上限(UCB)公式,以优化高风险任务中有效决策制定所需要的探索 - 利用平衡。 

可以说,这项研究推进了 LLM 在复杂推理挑战中的应用,为未来整合 AI 相关的技术创新奠定了基础,从而使得 LLM 驱动的应用拥有了更强大的决策制定、推理准确性和可靠性。

方法概览

MCTSr 架构图如图 1 所示:

大模型+蒙特卡洛树搜索,一招让LLaMa-3 8B奥数水平直逼GPT-4MCTSr 工作流包括:

  • 初始化:使用模型生成的答案和虚拟响应建立根节点,以最大限度地减少模型过度拟合趋势;

  • 选择:该算法采用值函数 Q 对所有未完全展开的答案进行排序,并采用贪心策略选择值最高的节点进行进一步的探索和优化;

  • Self-Refine :选择好的答案 a 使用 Self-Refine 框架进行优化。最初,模型生成反馈 m,指导优化过程以产生增强的答案 a ′;

  • Self-Evaluation:精炼后的答案经过评分从而采样一个奖励值,并计算其 Q 值。这涉及模型自我奖励反馈和约束,如严格的评分标准和抑制满分,以确保评分的可靠性和公平性;

  • 反向传播:将精炼答案的值反向传播到其父节点和其他相关节点,以更新树的值信息。如果任何子节点的 Q 值发生变化,则更新父节点的 Q;

  • UCT 更新:在所有节点的 Q 值更新完成后,确定一个候选节点集合 C,用于进一步扩展或选择,然后使用 UCT 更新公式更新所有节点的 UCT 值,以备下一步的选择阶段。

迭代上述阶段,直到满足终止条件 T 为止。

Self-Refine 

在 self-refine 阶段, 模型通过多轮对话完善提示来优化针对问题 P 的答案 a。首先,模型生成一个关于答案 a 的反思性或批判性评论 m。随后,在 m 的指导下,模型修改答案 a,产生一个改进版本 a',这种迭代的精炼方式提高了模型响应质量。

自评估

在数学问题 P 的答案精炼过程中,一个答案 a 的 Q 值被定义为将 a 进一步精炼成更优答案的预期质量。这个定义是基于从 a 到其重写形式的转换具有马尔可夫性质,即下一个状态(即改写后的答案)仅依赖于当前状态(即当前的答案 a),而与之前的状态无关。

此外,研究者还设计了三个约束:提示约束、满分抑制、重复采样。采样后,计算 a 的 Q 值。

大模型+蒙特卡洛树搜索,一招让LLaMa-3 8B奥数水平直逼GPT-4

反向传播

在所有叶节点的奖励值经过采样和 Q 值更新完成后,然后将这些变化传播至其父节点和祖节点。在这个更新过程中,如果节点 a 的子节点集合 Children (a) 中任何元素的 Q 函数值发生变化,那么节点 a 的 Q 函数值也将进行更新。这样的传播确保了节点的 Q 值能够反映其所有可能子节点的最新状态和评估。 

大模型+蒙特卡洛树搜索,一招让LLaMa-3 8B奥数水平直逼GPT-4

更新 UCT 和选择

在更新了树中所有节点的 Q 值之后,会进入下一轮选择阶段。这个过程包括以下步骤:

  • 候选节点选择:在选择节点时,研究者无需从根节点开始,而是按层次顺序遍历树中的节点。

  • UCT 更新:借鉴 AlphaGo,该研究使用 UCT 和 UCB-1 方法来平衡节点的探索和利用;对于候选集 C 中的节点 a,其 UCT_a 值为:

大模型+蒙特卡洛树搜索,一招让LLaMa-3 8B奥数水平直逼GPT-4

终止函数

提前终止:当搜索结果的改进开始减少或连续搜索产生重复结果时,终止发生。

搜索约束:一旦展开次数达到预定限制或树中的一个或多个节点满足最大深度约束,搜索就会终止。

实验结果

为了评估 MCTSr 算法在解决数学问题中的有效性,研究者将 LLaMA3-8B 作为基础模型,并使用 MCTSr 进行增强。他们在 Zero-Shot CoT、Self-Refine、4-rollouts MCTSr 和 8-rollouts MCTSr 等几种设置中,将 LLaMA3-8B 与 GPT-4、Claude 3 和 Gemini 1.5-Pro 等进行了比较。

研究者在 GSM8K 和 GSM-hard 测试集(它们分别包含了典型和具有挑战性的数学问题)上评估了上述方法,结果如下表 1 所示。

可以发现,MCTSr 的 rollout 次数与成功率之间存在着直接相关性,并随着迭代次数增加而显著提升,在不太复杂的 GSM8K 中尤为明显。不过对于更复杂的 GSM-Hard 测试集,即使 rollout 次数更高也会达到性能上限,表明当前策略在解决复杂问题时存在局限性。

这些结果强调了 MCT-Self-refine 算法的稳健性和潜在边界,以及持续改进的必要性,从而有效应对更复杂的挑战。

大模型+蒙特卡洛树搜索,一招让LLaMa-3 8B奥数水平直逼GPT-4

下表 2 展示了在 MATH 数据集上应用不同复杂度级别的 MCT-Self-refine 算法的结果。数据集分为五个难度级别,从 Level 1(最简单)到 Level 5(最具挑战性)。

结果显示,Level 1 的成功率最高,8 次 rollout 后,MCTSr 实现了 90.16% 的成功率,解决了 437 个问题中的 394 个。随着 rollout 次数的增加,这一级别的成功率显著提高。

在最具挑战性的 Level 5 难度,8 次 rollout 后,MCTSr 的成功率为 34.06%,解决了 1324 个问题中的 451 个。这说明了随着难度不断增加,该算法在高度复杂的场景中性能受到限制。

所有级别的整体性能显示,8 次 rollout 后,MCTSr 的累计成功率为 58.24%,解决了 5000 个问题中的 2912 个。这一成功率相较于 Zero-Shot CoT 的初始成功率 24.36% 有了显著提高。这表明了,rollout 次数的增加与成功率的提高呈现出一致性,强调了 MCT-Self-refine 算法在提升不同数学复杂度级别的问题解决能力方面的有效性。

这些结果还验证了 MCT-Self-refine 算法在学术和问题解决上下文中的潜力,并强调了其对 MATH 数据集中不同复杂度级别问题的可扩展性和适应性。

大模型+蒙特卡洛树搜索,一招让LLaMa-3 8B奥数水平直逼GPT-4

下表 3 为 MCT-Self-refne 算法在奥数竞赛的三个数据集上进行了测试:AlME、GAIC Math Odyssey 和 OlympiadBench。

AIME:从 Zero-Shot CoT 的 2.36%(解决 22 个问题)到 MCTSr 的 11.79%(解决 110 个问题)。

GAIC Math Odyssey:成功率从 17.22%(解决 67 个问题)上升至 49.36%(解决 192 个问题)。

OlympiadBench:从 Zero-Shot CoT 的 1.25%(解决 16 个问题)提高到 MCTSr 的 7.76%(解决 99 个问题)。

这些结果证实了 MCT-Self-refine 算法在未见过的数学问题上的适用性,表明其在奥林匹克等竞争性学术环境中具有优势。

大模型+蒙特卡洛树搜索,一招让LLaMa-3 8B奥数水平直逼GPT-4

如表 4 所示。与当前闭源大模型进行比较时,MCTSr 可以有效提升小参数开源模型(如 LLaMa-3)的数学推理能力到相当的水平。

大模型+蒙特卡洛树搜索,一招让LLaMa-3 8B奥数水平直逼GPT-4

更多技术细节和实验结果请参阅原论文。

以上是大模型+蒙特卡洛树搜索,一招让LLaMa-3 8B奥数水平直逼GPT-4的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1672
14
CakePHP 教程
1428
52
Laravel 教程
1332
25
PHP教程
1277
29
C# 教程
1257
24
ControlNet作者又出爆款!一张图生成绘画全过程,两天狂揽1.4k Star ControlNet作者又出爆款!一张图生成绘画全过程,两天狂揽1.4k Star Jul 17, 2024 am 01:56 AM

同样是图生视频,PaintsUndo走出了不一样的路线。ControlNet作者LvminZhang又开始整活了!这次瞄准绘画领域。新项目PaintsUndo刚上线不久,就收获1.4kstar(还在疯狂涨)。项目地址:https://github.com/lllyasviel/Paints-UNDO通过该项目,用户输入一张静态图像,PaintsUndo就能自动帮你生成整个绘画的全过程视频,从线稿到成品都有迹可循。绘制过程,线条变化多端甚是神奇,最终视频结果和原图像非常相似:我们再来看一个完整的绘

登顶开源AI软件工程师榜首,UIUC无Agent方案轻松解决SWE-bench真实编程问题 登顶开源AI软件工程师榜首,UIUC无Agent方案轻松解决SWE-bench真实编程问题 Jul 17, 2024 pm 10:02 PM

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com这篇论文的作者均来自伊利诺伊大学香槟分校(UIUC)张令明老师团队,包括:StevenXia,四年级博士生,研究方向是基于AI大模型的自动代码修复;邓茵琳,四年级博士生,研究方

从RLHF到DPO再到TDPO,大模型对齐算法已经是「token-level」 从RLHF到DPO再到TDPO,大模型对齐算法已经是「token-level」 Jun 24, 2024 pm 03:04 PM

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com在人工智能领域的发展过程中,对大语言模型(LLM)的控制与指导始终是核心挑战之一,旨在确保这些模型既强大又安全地服务于人类社会。早期的努力集中于通过人类反馈的强化学习方法(RL

arXiv论文可以发「弹幕」了,斯坦福alphaXiv讨论平台上线,LeCun点赞 arXiv论文可以发「弹幕」了,斯坦福alphaXiv讨论平台上线,LeCun点赞 Aug 01, 2024 pm 05:18 PM

干杯!当论文讨论细致到词句,是什么体验?最近,斯坦福大学的学生针对arXiv论文创建了一个开放讨论论坛——alphaXiv,可以直接在任何arXiv论文之上发布问题和评论。网站链接:https://alphaxiv.org/其实不需要专门访问这个网站,只需将任何URL中的arXiv更改为alphaXiv就可以直接在alphaXiv论坛上打开相应论文:可以精准定位到论文中的段落、句子:右侧讨论区,用户可以发表问题询问作者论文思路、细节,例如:也可以针对论文内容发表评论,例如:「给出至

OpenAI超级对齐团队遗作:两个大模型博弈一番,输出更好懂了 OpenAI超级对齐团队遗作:两个大模型博弈一番,输出更好懂了 Jul 19, 2024 am 01:29 AM

如果AI模型给的答案一点也看不懂,你敢用吗?随着机器学习系统在更重要的领域得到应用,证明为什么我们可以信任它们的输出,并明确何时不应信任它们,变得越来越重要。获得对复杂系统输出结果信任的一个可行方法是,要求系统对其输出产生一种解释,这种解释对人类或另一个受信任的系统来说是可读的,即可以完全理解以至于任何可能的错误都可以被发现。例如,为了建立对司法系统的信任,我们要求法院提供清晰易读的书面意见,解释并支持其决策。对于大型语言模型来说,我们也可以采用类似的方法。不过,在采用这种方法时,确保语言模型生

黎曼猜想显着突破!陶哲轩强推MIT、牛津新论文,37岁菲尔兹奖得主参与 黎曼猜想显着突破!陶哲轩强推MIT、牛津新论文,37岁菲尔兹奖得主参与 Aug 05, 2024 pm 03:32 PM

最近,被称为千禧年七大难题之一的黎曼猜想迎来了新突破。黎曼猜想是数学中一个非常重要的未解决问题,与素数分布的精确性质有关(素数是那些只能被1和自身整除的数字,它们在数论中扮演着基础性的角色)。在当今的数学文献中,已有超过一千条数学命题以黎曼猜想(或其推广形式)的成立为前提。也就是说,黎曼猜想及其推广形式一旦被证明,这一千多个命题将被确立为定理,对数学领域产生深远的影响;而如果黎曼猜想被证明是错误的,那么这些命题中的一部分也将随之失去其有效性。新的突破来自MIT数学教授LarryGuth和牛津大学

LLM用于时序预测真的不行,连推理能力都没用到 LLM用于时序预测真的不行,连推理能力都没用到 Jul 15, 2024 pm 03:59 PM

语言模型真的能用于时序预测吗?根据贝特里奇头条定律(任何以问号结尾的新闻标题,都能够用「不」来回答),答案应该是否定的。事实似乎也果然如此:强大如斯的LLM并不能很好地处理时序数据。时序,即时间序列,顾名思义,是指一组按照时间发生先后顺序进行排列的数据点序列。在很多领域,时序分析都很关键,包括疾病传播预测、零售分析、医疗和金融。在时序分析领域,近期不少研究者都在研究如何使用大型语言模型(LLM)来分类、预测和检测时间序列中的异常。这些论文假设擅长处理文本中顺序依赖关系的语言模型也能泛化用于时间序

首个基于Mamba的MLLM来了!模型权重、训练代码等已全部开源 首个基于Mamba的MLLM来了!模型权重、训练代码等已全部开源 Jul 17, 2024 am 02:46 AM

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com。引言近年来,多模态大型语言模型(MLLM)在各个领域的应用取得了显着的成功。然而,作为许多下游任务的基础模型,当前的MLLM由众所周知的Transformer网络构成,这种网

See all articles