自动识别最佳分子,降低合成成本,MIT开发分子设计决策算法框架
编辑 | 紫罗
AI 在简化药物发现方面的应用正在爆炸式增长。从数十亿种候选分子中筛选出可能具有开发新药所需特性的分子。需要考虑的变量太多了,从材料价格到出错的风险,即使科学家使用 AI,权衡合成最佳候选分子的成本也不是一件容易的事。
在此,MIT 研究人员开发了一个定量决策算法框架 SPARROW,来自动识别最佳分子候选物,从而最大限度地降低合成成本,同时最大限度地提高候选物具有所需特性的可能性。该算法还确定了合成这些分子所需的材料和实验步骤。
SPARROW 考虑了一次合成一批分子的成本,因为多个候选分子通常可以从一些相同的化合物中衍生出来。此外,这种统一的方法可以从在线存储库和广泛使用的 AI 工具中获取有关分子设计、性质预测和合成规划的关键信息。
除了帮助制药公司更有效地发现新药外,SPARROW 还可以用于发明新的农用化学品或发现有机电子产品的专用材料等。
相关研究以《An algorithmic framework for synthetic cost-aware decision making in molecular design》为题,于 6 月 19 日发布在《Nature Computational Science》上。
论文链接:https://www.nature.com/articles/s43588-024-00639-y
「化合物的选择是一门艺术,有时它是一门非常成功的艺术。但鉴于我们拥有所有这些模型和预测工具,它们能提供关于分子可能如何表现以及如何合成的信息,我们应该使用这些信息来指导我们做出的决策。」论文通讯作者 、MIT 化学工程系助理教授 Connor Coley 说。
定量决策算法框架 SPARROW
「合成规划和基于奖励的路线优化工作流程」(Synthesis Planning And Rewards-based Route Optimization Workflow,SPARROW),是一种用于驱动设计周期的算法决策框架。
图示:SPARROW 概述及其在分子设计周期中的作用。(来源:论文)
该研究建立在早期的问题公式的基础上,用于同时选择多个分子的合成路线,以及产品和工艺系统设计的集成。与传统的筛选方法不同,SPARROW 使用一个多目标优化标准,平衡成本与效用,从候选分子库中对分子及其假设的合成路线进行优先排序。
SPARROW 生成由候选目标分子和合成路线组成的反应网络。通过解决基于图的优化问题,可以筛选出一组分子和合成路线,以最佳地平衡累积合成成本和效用。在此背景下,效用衡量评估分子属性的价值。
效用的适当衡量标准将因应用和设计的不同阶段而异。它可能包含分子属性预测、这些预测中的不确定性或新数据点改善结构-属性关系的潜力。必须向 SPARROW 提供一个候选库,并提供相应的奖励,以表明与每个候选分子相关的效用。
图示:SPARROW 的问题表述。(来源:论文)
选择一个分子所获得的奖励还取决于所选合成该分子的反应步骤是否成功。如果候选分子合成路线中的某个反应步骤失败,则无法获得任何信息。研究人员通过最大化选择一个候选分子的预期奖励来形式化这一点,该预期奖励可以用其奖励乘以成功合成该分子的概率来表示。
平衡成本和效用,SPARROW 的目标可以形式化为所有选定目标的预期奖励除以使用选定路线合成所有选定目标的成本。
复杂的成本考量
从某种意义上说,科学家是否应该合成和测试某种分子,归结为合成成本与实验价值的问题。然而,确定成本或价值本身就是一个难题。
SPARROW 通过考虑合成分子所涉及的共享中间化合物并将该信息纳入其成本与价值函数来应对这一挑战。
「当你考虑设计一批分子的优化问题时,添加新结构的成本取决于你已经选择的分子。」Coley 说。
该框架还考虑了诸如起始材料的成本、每条合成路线所涉及的反应数量,以及这些反应在第一次尝试时成功的可能性等因素。
要使用 SPARROW,科学家需提供一组他们正在考虑测试的分子化合物,以及他们希望找到的属性定义。
接下来,SPARROW 收集有关分子及其合成途径的信息,然后权衡每个分子的价值与合成一批候选物的成本。它会自动选择符合用户标准的最佳候选子集,并为这些化合物找到最具成本效益的合成路线。
论文一作 Jenna Fromer 说:「它在一步中完成了所有这些优化,因此它可以同时捕捉所有这些相互竞争的目标。」
多功能框架
SPARROW 的独特之处在于它可以整合人类手工设计的分子结构、虚拟目录中存在的分子结构,或生成式 AI 模型创造的从未见过的分子结构。
「我们有各种不同的想法来源。SPARROW 的吸引力之一在于你可以将所有这些想法放在一个公平的竞争环境中。」Coley 补充道。
研究人员通过三个案例研究展示了 SPARROW 协调分子设计周期的能力。这些应用说明了 SPARROW 如何(1)成功平衡信息增益与合成成本,(2)捕捉一批分子合成成本的非加和性,以及(3)扩展至包含数百个分子的候选库。
图示:SPARROW 在 14 个 ASCT2 抑制剂候选库中平衡成本和奖励的能力证明。(来源:论文)
他们发现 SPARROW 有效地捕捉了批量合成的边际成本,并确定了常见的实验步骤和中间化学品。此外,它可以扩展以处理数百种潜在的分子候选物。
「在化学机器学习社区中,有许多模型可以很好地用于逆合成或分子性质预测,但我们实际上如何使用它们?我们的框架旨在发挥这些前期研究的价值。通过创建 SPARROW,我们希望能够指导其他研究人员使用他们自己的成本和效用函数来思考化合物的筛选。」Fromer 说。
未来,研究人员希望向 SPARROW 中融入更多复杂性。例如,他们希望让算法能够考虑到测试一种化合物的价值可能并不总是恒定的。他们还希望在其成本与价值函数中包含更多并行化学元素。
参考内容:https://news.mit.edu/2024/smarter-way-streamline-drug-discovery-0617
以上是自动识别最佳分子,降低合成成本,MIT开发分子设计决策算法框架的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

在现代制造业中,精准的缺陷检测不仅是保证产品质量的关键,更是提升生产效率的核心。然而,现有的缺陷检测数据集常常缺乏实际应用所需的精确度和语义丰富性,导致模型无法识别具体的缺陷类别或位置。为了解决这一难题,由香港科技大学广州和思谋科技组成的顶尖研究团队,创新性地开发出了“DefectSpectrum”数据集,为工业缺陷提供了详尽、语义丰富的大规模标注。如表一所示,相比其他工业数据集,“DefectSpectrum”数据集提供了最多的缺陷标注(5438张缺陷样本),最细致的缺陷分类(125种缺陷类别

开放LLM社区正是百花齐放、竞相争鸣的时代,你能看到Llama-3-70B-Instruct、QWen2-72B-Instruct、Nemotron-4-340B-Instruct、Mixtral-8x22BInstruct-v0.1等许多表现优良的模型。但是,相比于以GPT-4-Turbo为代表的专有大模型,开放模型在很多领域依然还有明显差距。在通用模型之外,也有一些专精关键领域的开放模型已被开发出来,比如用于编程和数学的DeepSeek-Coder-V2、用于视觉-语言任务的InternVL

编辑|KX时至今日,晶体学所测定的结构细节和精度,从简单的金属到大型膜蛋白,是任何其他方法都无法比拟的。然而,最大的挑战——所谓的相位问题,仍然是从实验确定的振幅中检索相位信息。丹麦哥本哈根大学研究人员,开发了一种解决晶体相问题的深度学习方法PhAI,利用数百万人工晶体结构及其相应的合成衍射数据训练的深度学习神经网络,可以生成准确的电子密度图。研究表明,这种基于深度学习的从头算结构解决方案方法,可以以仅2埃的分辨率解决相位问题,该分辨率仅相当于原子分辨率可用数据的10%到20%,而传统的从头算方

对于AI来说,奥数不再是问题了。本周四,谷歌DeepMind的人工智能完成了一项壮举:用AI做出了今年国际数学奥林匹克竞赛IMO的真题,并且距拿金牌仅一步之遥。上周刚刚结束的IMO竞赛共有六道赛题,涉及代数、组合学、几何和数论。谷歌提出的混合AI系统做对了四道,获得28分,达到了银牌水平。本月初,UCLA终身教授陶哲轩刚刚宣传了百万美元奖金的AI数学奥林匹克竞赛(AIMO进步奖),没想到7月还没过,AI的做题水平就进步到了这种水平。IMO上同步做题,做对了最难题IMO是历史最悠久、规模最大、最负

2023年,几乎AI的每个领域都在以前所未有的速度进化,同时,AI也在不断地推动着具身智能、自动驾驶等关键赛道的技术边界。多模态趋势下,Transformer作为AI大模型主流架构的局面是否会撼动?为何探索基于MoE(专家混合)架构的大模型成为业内新趋势?大型视觉模型(LVM)能否成为通用视觉的新突破?...我们从过去的半年发布的2023年本站PRO会员通讯中,挑选了10份针对以上领域技术趋势、产业变革进行深入剖析的专题解读,助您在新的一年里为大展宏图做好准备。本篇解读来自2023年Week50

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

编辑|KX逆合成是药物发现和有机合成中的一项关键任务,AI越来越多地用于加快这一过程。现有AI方法性能不尽人意,多样性有限。在实践中,化学反应通常会引起局部分子变化,反应物和产物之间存在很大重叠。受此启发,浙江大学侯廷军团队提出将单步逆合成预测重新定义为分子串编辑任务,迭代细化目标分子串以生成前体化合物。并提出了基于编辑的逆合成模型EditRetro,该模型可以实现高质量和多样化的预测。大量实验表明,模型在标准基准数据集USPTO-50 K上取得了出色的性能,top-1准确率达到60.8%。

编辑|ScienceAI基于有限的临床数据,数百种医疗算法已被批准。科学家们正在讨论由谁来测试这些工具,以及如何最好地进行测试。DevinSingh在急诊室目睹了一名儿科患者因长时间等待救治而心脏骤停,这促使他探索AI在缩短等待时间中的应用。Singh利用了SickKids急诊室的分诊数据,与同事们建立了一系列AI模型,用于提供潜在诊断和推荐测试。一项研究表明,这些模型可以加快22.3%的就诊速度,将每位需要进行医学检查的患者的结果处理速度加快近3小时。然而,人工智能算法在研究中的成功只是验证此
