奥林匹克竞赛里选最聪明的AI:Claude-3.5-Sonnet vs. GPT-4o?

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com
奥林匹克学科竞赛不仅是对人类(碳基智能)思维敏捷性、知识掌握和逻辑推理的极限挑战,更是AI(“硅基智能”)锻炼的绝佳练兵场,是衡量AI与“超级智能”距离的重要标尺。OlympicArena——一个真正意义上的AI奥运竞技场。在这里,AI不仅要展示其在传统学科知识上的深度(数学、物理、生物、化学、地理等顶级竞赛),还要在模型间的认知推理能力上展开较量。
Claude-3.5-Sonnet在整体表现上与GPT-4o相比极具竞争力,甚至在一些科目上超过了GPT-4o(比如在物理、化学和生物学上)。 Gemini-1.5-Pro和GPT-4V排名紧随GPT-4o和Claude-3.5-Sonnet之后,但它们之间存在明显的表现差距。 来自开源社区的AI模型性能明显落后于这些专有模型。 这些模型在此基准测试上的表现不尽人意,表明我们在实现超级智能之路上还有很长的路要走。
项目主页:https://gair-nlp.github.io/OlympicArena/
新发布的Claude-3.5-Sonnet性能强大,达到了几乎与GPT-4o相当的水平。两者的整体准确率差异仅约1%。 新发布的Gemini-1.5-Pro也展现出了相当的实力,在大多数学科中的表现超过了GPT-4V(OpenAI当前第二强大的模型)。 值得注意的是,在撰写本报告时,这三个模型中最早的发布时间仅为一个月前,反映了这一领域的快速发展。
OpenAI的GPT系列在传统的数学推理和编程能力上表现突出。这表明GPT系列模型已经经过了严格训练以处理需要大量演绎推理和算法思维的任务。 相反,当涉及到需要将知识与推理结合的学科,如物理、化学和生物学时,其他模型如Claude-3.5-Sonnet和Gemini-1.5-Pro展现出了具有竞争性的表现。这体现了不同模型的专业领域以及潜在的训练重点,表明在推理密集型任务以及知识整合型任务可能存在的权衡。
数学和计算机编程强调复杂演绎推理技巧和基于规则导出普适性结论,倾向于较少依赖预先存在的知识。相比之下,像化学和生物学这样的学科往往需要大量的知识库来基于已知的因果关系和现象信息进行推理。这表明,尽管数学和编程能力仍然是衡量模型推理能力的有效指标,其他学科更好地测试了模型在基于其内部知识进行推理和问题分析方面的能力。 不同学科的特点表明了定制化训练数据集的重要性。例如,要提高模型在知识密集型学科(如化学和生物学)中的表现,训练期间模型需要广泛接触特定领域的数据。相反,对于需要强大逻辑和演绎推理的学科,如数学和计算机科学,模型则能从专注于纯逻辑推理的训练中受益。 此外,推理能力和知识应用之间的区别表明了模型跨学科应用的潜力。例如,具有强大演绎推理能力的模型可以协助需要系统化思维解决问题的领域,如科学研究。而拥有丰富知识的模型在重度依赖现有信息的学科中非常宝贵,如医学和环境科学。理解这些细微差别有助于开发更专业和多功能的模型。
Caption: 各模型在不同语言问题的能力表现。
尽管这些模型包含了大量中文训练数据并且具有跨语言泛化能力,但它们的训练数据主要以英语为主。 中文问题的难度比英文问题更具挑战性,尤其是在物理和化学等科目中,中国奥林匹克竞赛的问题更难。 这些模型在识别多模态图像中的字符方面能力不足,中文环境下这一问题更为严重。
以上是奥林匹克竞赛里选最聪明的AI:Claude-3.5-Sonnet vs. GPT-4o?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

同样是图生视频,PaintsUndo走出了不一样的路线。ControlNet作者LvminZhang又开始整活了!这次瞄准绘画领域。新项目PaintsUndo刚上线不久,就收获1.4kstar(还在疯狂涨)。项目地址:https://github.com/lllyasviel/Paints-UNDO通过该项目,用户输入一张静态图像,PaintsUndo就能自动帮你生成整个绘画的全过程视频,从线稿到成品都有迹可循。绘制过程,线条变化多端甚是神奇,最终视频结果和原图像非常相似:我们再来看一个完整的绘

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com这篇论文的作者均来自伊利诺伊大学香槟分校(UIUC)张令明老师团队,包括:StevenXia,四年级博士生,研究方向是基于AI大模型的自动代码修复;邓茵琳,四年级博士生,研究方

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com在人工智能领域的发展过程中,对大语言模型(LLM)的控制与指导始终是核心挑战之一,旨在确保这些模型既强大又安全地服务于人类社会。早期的努力集中于通过人类反馈的强化学习方法(RL

干杯!当论文讨论细致到词句,是什么体验?最近,斯坦福大学的学生针对arXiv论文创建了一个开放讨论论坛——alphaXiv,可以直接在任何arXiv论文之上发布问题和评论。网站链接:https://alphaxiv.org/其实不需要专门访问这个网站,只需将任何URL中的arXiv更改为alphaXiv就可以直接在alphaXiv论坛上打开相应论文:可以精准定位到论文中的段落、句子:右侧讨论区,用户可以发表问题询问作者论文思路、细节,例如:也可以针对论文内容发表评论,例如:「给出至

如果AI模型给的答案一点也看不懂,你敢用吗?随着机器学习系统在更重要的领域得到应用,证明为什么我们可以信任它们的输出,并明确何时不应信任它们,变得越来越重要。获得对复杂系统输出结果信任的一个可行方法是,要求系统对其输出产生一种解释,这种解释对人类或另一个受信任的系统来说是可读的,即可以完全理解以至于任何可能的错误都可以被发现。例如,为了建立对司法系统的信任,我们要求法院提供清晰易读的书面意见,解释并支持其决策。对于大型语言模型来说,我们也可以采用类似的方法。不过,在采用这种方法时,确保语言模型生

最近,被称为千禧年七大难题之一的黎曼猜想迎来了新突破。黎曼猜想是数学中一个非常重要的未解决问题,与素数分布的精确性质有关(素数是那些只能被1和自身整除的数字,它们在数论中扮演着基础性的角色)。在当今的数学文献中,已有超过一千条数学命题以黎曼猜想(或其推广形式)的成立为前提。也就是说,黎曼猜想及其推广形式一旦被证明,这一千多个命题将被确立为定理,对数学领域产生深远的影响;而如果黎曼猜想被证明是错误的,那么这些命题中的一部分也将随之失去其有效性。新的突破来自MIT数学教授LarryGuth和牛津大学

语言模型真的能用于时序预测吗?根据贝特里奇头条定律(任何以问号结尾的新闻标题,都能够用「不」来回答),答案应该是否定的。事实似乎也果然如此:强大如斯的LLM并不能很好地处理时序数据。时序,即时间序列,顾名思义,是指一组按照时间发生先后顺序进行排列的数据点序列。在很多领域,时序分析都很关键,包括疾病传播预测、零售分析、医疗和金融。在时序分析领域,近期不少研究者都在研究如何使用大型语言模型(LLM)来分类、预测和检测时间序列中的异常。这些论文假设擅长处理文本中顺序依赖关系的语言模型也能泛化用于时间序

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com。引言近年来,多模态大型语言模型(MLLM)在各个领域的应用取得了显着的成功。然而,作为许多下游任务的基础模型,当前的MLLM由众所周知的Transformer网络构成,这种网
