首页 科技周边 人工智能 ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

Jun 26, 2024 pm 05:07 PM
工程 量子隐式表征网络 QIREN

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了
AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com

本文作者是天津大学智能与计算学部张鹏教授及其硕士生赵佳铭,博士生乔文博、高珲。该项研究工作受到国家自然科学基金委、天津大学 - 中科闻歌联合实验室资助。

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

  • 论文标题:Quantum Implicit Neural Representations
  • 论文作者:Jiaming Zhao, Wenbo Qiao, Peng Zhang*, Hui Gao
  • 论文链接:https://arxiv.org/abs/2406.03873

引言

天津大学量子智能与语言理解团队创新性地将量子计算引入隐式神经表征领域,提出了量子隐式表征网络(Quantum Implicit Representation Network, QIREN)。与经典神经网络方法相比,该方法在理论上具有指数级强的信号表征能力。实验结果也证实了 QIREN 的确表现出超越信号表示任务上 SOTA 模型的优异性能,在参数量更少的情况下,拟合误差最多减少 35%。图 1 中展示了本文的核心思想和主要结论。相关论文已经被机器学习领域最权威的会议之一 ICML 2024 接收。ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了
                                图 1. 经典傅立叶神经网络与量子傅立叶神经网络。

近年来,隐式神经表征作为一种新兴的信号表征方式引起了广泛关注。与传统的离散网格表示(例如用像素网格表示的图像)相比,隐式神经表征具有许多独特的优势。首先,它具备"无限分辨率"的能力,可以在任意空间分辨率下进行采样。其次,隐式神经表征具有出色的存储空间节省,为数据存储提供了便利。正因为这些独特的优势,隐式神经表征迅速成为表示图像、物体和3D场景等信号的主流范式。大多数关于隐式神经表征的早期研究都建立在基于ReLU的多层感知器(MLP)之上。然而,基于ReLU的MLP难以精确建模信号的高频部分,如图2所示。最近的研究已经开始探索使用傅立叶神经网络(FNN)来克服这一限制。然而,面对现实应用中越来越复杂的拟合任务,经典傅立叶神经网络也需要越来越多的训练参数,这增加了对计算资源的需求。本文提出的量子隐式神经表征利用了量子优势从而能够减少参数和计算消耗,这种解决方案能够给隐式神经表征甚至机器学习领域带来新的启发。

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

                              图 2. 真实图像的不同频率分量(顶部)和基于 ReLU 的 MLP 拟合的图像的不同频率分量(底部)

模型

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

                               图 3. 模型架构

模型整体架构

QIREN 的总体架构如图 3 所示,由 N 个混合层和末端的线性层组成。该模型以坐标作为输入并输出信号值。数据最初进入混合层,从 Linear 层和 BatchNorm 层开始,得到:

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

然后被输入到数据重新上传量子电路 QC 中。在图 2 (b) 和 (c) 中,我们给出了参数层和编码层量子电路的具体实现。参数层由 K 个堆叠块组成。每个块包含应用于每个量子位的旋转门,以及以循环方式连接的 CNOT 门。编码层在每个量子位上应用门。最后,我们测量了量子态相对于可观测量的期望值。量子电路的输出由下式给出:

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

其中 O 表示任意可观测量。第 n 个混合层的输出将被用作第(n+1)层的输入。最后,我们添加一个线性层以接收并输出。我们使用均方误差(MSE)作为损失函数来训练模型:

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

模型理论分析

在一些先前的研究中,数据重上传量子线路的数学性质已经被揭示,本质上数据重上传量子线路是以傅立叶级数的形式拟合目标函数。但之前的工作只探索了多层单量子比特线路或单层多量子比特线路,并且没有与经典方法进行比较,没有找到数据重上传量子线路的优势。我们将研究扩展到多层多量子比特线路。此外,我们证明了在隐式神经表征领域,以数据重上传量子线路为核心组件的混合量子神经网络 QIREN 相比经典方法有着指数级优势。我们分析了 QIREN 中的量子层和经典层的作用并将其归纳为以下三点:

1. 在最佳条件下,数据重上传量子电路表示傅立叶级数的能力随着电路的大小呈指数增长。

具体推导见论文 4.2 和 4.3 节。

2. 线性层的作用是进一步扩展频谱和调整频率,从而提高拟合性能。

在将数据上传到量子电路之前应用线性层相当于调整编码层哈密顿量的本征值,最终影响频谱。这种方法有两个优点。首先,它可以使频谱更大。仅用门编码时频谱中会产生一些冗余项。这种冗余可以通过使用线性层来减少。其次,它使频谱的覆盖范围可以调整,旨在覆盖更重要的系数更大的频率。因此,加入线性层可以进一步提高 QIREN 的拟合性能。

3. Batchnorm 层的作用是加速量子模型的收敛。

在前馈神经网络中,数据通常在激活函数之前通过 BatchNorm 层,这有效地防止了消失梯度问题。类似地,在 QIREN 中,量子电路取代了激活函数,并在提供非线性方面发挥作用(量子电路本身是线性的,但将经典数据上传到量子电路的过程是非线性的)。因此,我们在这里添加了 BatchNorm 层,目的是稳定和加速模型的收敛。

实验结果

我们通过图像表示和声音表示任务验证了 QIREN 在表示信号,特别是高频信号方面的优越性能。实验结果如表 1 所示。QIREN 和 SIREN 在声音表示任务上表现出相似的表现。尽管这两个模型的性能似乎是可比较的,但值得强调的是,我们的模型以最少的参数实现了 35.1% 的内存节省,并且 SIREN 的收敛需要设置合适的超参数,而我们的模型没有这种限制。然后,我们从频率的角度分析了模型的输出。我们在图 4 中可视化了模型输出的频谱。很明显,模型输出的低频分布都接近真实情况。然而,当涉及到高频分布时,QIREN 和 SIREN 都拟合得很好,其次是具有随即傅立叶特征(RFF)的基于 ReLU 的 MLP。基于 ReLU 和基于 Tanh 的 MLP 甚至缺乏信号的高频部分。

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

表 1. 模型在信号表示和图像超分辨率任务上的 MSE()。被认为是 SOTA 的模型标有 *。params 表示模型参数量,mem 表示与离散网格表示相比,模型节省的内存。

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

                              图 4. 声音表示任务中模型输出的频谱

QIREN 在图像表示任务中用最少的参数实现了最佳性能,与 SOTA 模型相比,误差最大减少了 34.8%。为了进一步探索模型的信号表示能力,我们使用滤波器来分离其输出的高频和低频分量,并分别比较这两个分量的拟合误差,结果如图 5 所示。QIREN 在拟合高频和低频分量时始终实现了最低的误差。

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

                                图 5. 与基于 Tanh 的 MLP 相比,每个模型的相对误差。阴影区域表示低频误差,而非阴影区域表示高频误差。

最新的研究引入了一个突破性的框架将隐式神经表征扩展到图像生成。更具体地说,该框架利用以随机分布为输入的超网络来生成隐式表征网络的参数。随后,这些生成的参数被分配给隐式表征网络。最后,隐式表征网络以坐标为输入生成图像。采用对抗性方法来确保生成的图像与我们期望的结果一致。在这项任务中,我们采用了这样一个框架,并建立在 StyleGAN2 的基础上。

实验结果如表 2 所示。我们还进一步探索了 QIREN 生成器的一些令人兴奋的特性,如图 6 和 7 所示。

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

                               表 2. 模型在 FFHQ 和 CelebA-HQ 数据集上的 FID 得分。

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

                                 图 6. 开箱即用的超分辨率

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

                             图 7. 有意义的图像空间插值
总结

这项工作不仅将量子优势融入到隐式神经表示中,而且为量子神经网络开辟了一个有前景的应用方向 —— 隐式神经表征。值得强调的是,隐式神经表征还有许多其他潜在的应用,如表示场景或 3D 对象、时间序列预测和求解微分方程。对于一大类对连续信号建模的任务,我们都可以考虑引入隐式表征网络作为基本组件。基于本文的理论和实验基础,我们可以在未来的工作中将 QIREN 扩展到这些应用中,并且 QIREN 有望在这些领域中以更少的参数产生更好的结果。同时,我们为量子机器学习找到了一个合适的应用场景。从而促进量子机器学习社区内进一步的实践和创新研究。

以上是ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1670
14
CakePHP 教程
1428
52
Laravel 教程
1329
25
PHP教程
1273
29
C# 教程
1256
24
ControlNet作者又出爆款!一张图生成绘画全过程,两天狂揽1.4k Star ControlNet作者又出爆款!一张图生成绘画全过程,两天狂揽1.4k Star Jul 17, 2024 am 01:56 AM

同样是图生视频,PaintsUndo走出了不一样的路线。ControlNet作者LvminZhang又开始整活了!这次瞄准绘画领域。新项目PaintsUndo刚上线不久,就收获1.4kstar(还在疯狂涨)。项目地址:https://github.com/lllyasviel/Paints-UNDO通过该项目,用户输入一张静态图像,PaintsUndo就能自动帮你生成整个绘画的全过程视频,从线稿到成品都有迹可循。绘制过程,线条变化多端甚是神奇,最终视频结果和原图像非常相似:我们再来看一个完整的绘

登顶开源AI软件工程师榜首,UIUC无Agent方案轻松解决SWE-bench真实编程问题 登顶开源AI软件工程师榜首,UIUC无Agent方案轻松解决SWE-bench真实编程问题 Jul 17, 2024 pm 10:02 PM

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com这篇论文的作者均来自伊利诺伊大学香槟分校(UIUC)张令明老师团队,包括:StevenXia,四年级博士生,研究方向是基于AI大模型的自动代码修复;邓茵琳,四年级博士生,研究方

从RLHF到DPO再到TDPO,大模型对齐算法已经是「token-level」 从RLHF到DPO再到TDPO,大模型对齐算法已经是「token-level」 Jun 24, 2024 pm 03:04 PM

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com在人工智能领域的发展过程中,对大语言模型(LLM)的控制与指导始终是核心挑战之一,旨在确保这些模型既强大又安全地服务于人类社会。早期的努力集中于通过人类反馈的强化学习方法(RL

arXiv论文可以发「弹幕」了,斯坦福alphaXiv讨论平台上线,LeCun点赞 arXiv论文可以发「弹幕」了,斯坦福alphaXiv讨论平台上线,LeCun点赞 Aug 01, 2024 pm 05:18 PM

干杯!当论文讨论细致到词句,是什么体验?最近,斯坦福大学的学生针对arXiv论文创建了一个开放讨论论坛——alphaXiv,可以直接在任何arXiv论文之上发布问题和评论。网站链接:https://alphaxiv.org/其实不需要专门访问这个网站,只需将任何URL中的arXiv更改为alphaXiv就可以直接在alphaXiv论坛上打开相应论文:可以精准定位到论文中的段落、句子:右侧讨论区,用户可以发表问题询问作者论文思路、细节,例如:也可以针对论文内容发表评论,例如:「给出至

OpenAI超级对齐团队遗作:两个大模型博弈一番,输出更好懂了 OpenAI超级对齐团队遗作:两个大模型博弈一番,输出更好懂了 Jul 19, 2024 am 01:29 AM

如果AI模型给的答案一点也看不懂,你敢用吗?随着机器学习系统在更重要的领域得到应用,证明为什么我们可以信任它们的输出,并明确何时不应信任它们,变得越来越重要。获得对复杂系统输出结果信任的一个可行方法是,要求系统对其输出产生一种解释,这种解释对人类或另一个受信任的系统来说是可读的,即可以完全理解以至于任何可能的错误都可以被发现。例如,为了建立对司法系统的信任,我们要求法院提供清晰易读的书面意见,解释并支持其决策。对于大型语言模型来说,我们也可以采用类似的方法。不过,在采用这种方法时,确保语言模型生

黎曼猜想显着突破!陶哲轩强推MIT、牛津新论文,37岁菲尔兹奖得主参与 黎曼猜想显着突破!陶哲轩强推MIT、牛津新论文,37岁菲尔兹奖得主参与 Aug 05, 2024 pm 03:32 PM

最近,被称为千禧年七大难题之一的黎曼猜想迎来了新突破。黎曼猜想是数学中一个非常重要的未解决问题,与素数分布的精确性质有关(素数是那些只能被1和自身整除的数字,它们在数论中扮演着基础性的角色)。在当今的数学文献中,已有超过一千条数学命题以黎曼猜想(或其推广形式)的成立为前提。也就是说,黎曼猜想及其推广形式一旦被证明,这一千多个命题将被确立为定理,对数学领域产生深远的影响;而如果黎曼猜想被证明是错误的,那么这些命题中的一部分也将随之失去其有效性。新的突破来自MIT数学教授LarryGuth和牛津大学

LLM用于时序预测真的不行,连推理能力都没用到 LLM用于时序预测真的不行,连推理能力都没用到 Jul 15, 2024 pm 03:59 PM

语言模型真的能用于时序预测吗?根据贝特里奇头条定律(任何以问号结尾的新闻标题,都能够用「不」来回答),答案应该是否定的。事实似乎也果然如此:强大如斯的LLM并不能很好地处理时序数据。时序,即时间序列,顾名思义,是指一组按照时间发生先后顺序进行排列的数据点序列。在很多领域,时序分析都很关键,包括疾病传播预测、零售分析、医疗和金融。在时序分析领域,近期不少研究者都在研究如何使用大型语言模型(LLM)来分类、预测和检测时间序列中的异常。这些论文假设擅长处理文本中顺序依赖关系的语言模型也能泛化用于时间序

首个基于Mamba的MLLM来了!模型权重、训练代码等已全部开源 首个基于Mamba的MLLM来了!模型权重、训练代码等已全部开源 Jul 17, 2024 am 02:46 AM

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com。引言近年来,多模态大型语言模型(MLLM)在各个领域的应用取得了显着的成功。然而,作为许多下游任务的基础模型,当前的MLLM由众所周知的Transformer网络构成,这种网

See all articles