在 2024 年世界人工智能大会的现场,很多人在一个展台前排队,只为让 AI 大模型给自己在天庭「安排」一个差事。
流程:体验方式:
与上影合作的 AI 互动体验《AI + 大闹天宫》只是阶跃星辰展示大模型魅力的开胃菜。在 WAIC 期间,他们隆重推出了以下大招:
Step-2 万亿参数大模型
在 3 月份与阶跃星辰首次亮相后,Step-2 已进化至全面接近 GPT-4 的水平,在数理逻辑、编程、中文知识、英文知识和指令遵循等方面表现优异。
Step-1.5V 多模态大模型
基于 Step-2 模型,阶跃星辰开发出了多模态大模型 Step-1.5V,不仅具有强大的感知和视频理解能力,还可根据图像内容进行高级推理(如解答数学题、编写代码、创作诗歌)。
Step-1X 图像生成大模型
《AI + 大闹天宫》中的图像生成由 Step-1X 模型完成,该模型针对中国元素进行了深度优化,并拥有出色的语义对齐和指令遵循能力。
阶跃星辰已建立起涵盖万亿参数 MoE 大模型和多模态大模型的完整大模型矩阵,成为大模型创业公司第一梯队。这得益于他们对 Scaling Law 的坚持以及匹配的技术和资源实力。
从头训练的
Step-2 万亿参数大模型
万亿参数量将显著提升模型在数学、编程等领域的推理能力。Step-2 相比千亿级模型,可解决更为复杂的数理逻辑和编程问题,也得到了基准评测的量化证实。
此外,它的中英文能力和指令跟随能力也实现了明显提升。前面提到,在 Step-1.5V 的诞生过程中,Step-2 功不可没。这指的是,在 Step-1.5V 进行 RLHF(基于人类反馈的强化学习)训练过程中,Step-2 是作为监督模型来用的,这相当于 Step-1.5V 有了一个万亿参数的模型当老师。在这个老师的指导下,Step-1.5V 的推理能力大大提升,能够根据图像内容进行各类高级推理任务,如解答数学题、编写代码、创作诗歌等。这也是 OpenAI GPT-4o 最近所展示的能力之一,这项能力让外界对于它的应用前景充满了期待。
多模态的生成能力主要体现在 Step-1X 这个新模型上。与一些同类模型相比,它有更好的语义对齐和指令跟随能力,同时针对中国元素做了深度优化,更适合国人的审美风格。
基于该模型打造的《大闹天宫》AI 互动体验的背后融合了图像理解、风格迁移、图像生成、剧情创作等多种能力,丰富立体地展现了阶跃星辰行业领先的多模态水平。例如,在初始角色生成时,系统首先会判断用户上传的照片是否符合「捏脸」要求,然后用非常《大闹天宫》的语言风格灵活给予反馈。这里就体现了模型的图片理解能力和大语言模型的能力。在大模型技术加持下,这款游戏就让玩家获得了和传统线上 H5 游戏完全不同的互动体验。因为所有的互动问题、用户形象、分析结果都是模型实时学习特征后生成的,真正做到了千人千面和无限剧情的可能。
这些优异的表现离不开阶跃星辰全链路自研的 DiT 模型架构(OpenAI 的 Sora 也是 DiT 架构)。为了让更多人用上该模型,阶跃星辰给 Step-1X 设计了 600M、2B、8B 三种不同的参数量,以满足不同算力场景的需求。在 3 月份的亮相活动中,阶跃星辰创始人姜大昕曾明确指出,他认为大模型的演进会经历三个阶段:
这也是姜大昕等人从创业之初就在坚持的路线。在这条路上,「万亿参数」和「多模融合」缺一不可,Step-2 和 Step-1.5V、Step-1X 都是他们在这条路上达成的节点。
而且,这些节点是一环套一环的。以 OpenAI 为例,他们在年初发布的视频生成模型 Sora 使用了 OpenAI 的内部工具(很可能是 GPT-4V)进行标注;而 GPT-4V 又是以 GPT-4 相关技术为基础训练出来的。就目前来看,单模态模型的强大能力会为多模态打下基础;多模态的理解又会为生成打下基础。靠着这样的模型矩阵,OpenAI 实现了左脚踩右脚。而阶跃星辰正在国内印证这条路线。
我们期待这家公司给国内大模型领域带来更多惊喜。
以上是揭秘:阶跃星辰万亿MoE+多模态大模型矩阵亮相的详细内容。更多信息请关注PHP中文网其他相关文章!