此处介绍的交通管理系统 (TMS) 集成了预测建模和实时可视化,以促进高效的交通控制和事件管理。该系统使用 Python 和 Tkinter 开发图形界面,利用机器学习算法根据天气状况和高峰时段动态预测交通量。该应用程序通过交互式图表可视化历史和预测交通数据,为城市交通管理决策提供至关重要的见解。
确保安装了 Python 3.x。使用 pip 安装依赖项:
pip install pandas matplotlib scikit-learn
git clone <https://github.com/EkeminiThompson/traffic_management_system.git> cd traffic-management-system
pip install -r requirements.txt
python main.py
交通预测:
图形可视化:
交通灯控制:
事件报告:
# Main application using Tkinter for GUI import tkinter as tk from tkinter import messagebox, ttk import pandas as pd import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg import random from datetime import datetime from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestRegressor # Mock data for demonstration data = { 'temperature': [25, 28, 30, 22, 20], 'precipitation': [0, 0, 0.2, 0.5, 0], 'hour': [8, 9, 10, 17, 18], 'traffic_volume': [100, 200, 400, 300, 250] } df = pd.DataFrame(data) # Feature engineering df['is_rush_hour'] = df['hour'].apply(lambda x: 1 if (x >= 7 and x <= 9) or (x >= 16 and x <= 18) else 0) # Model training X = df[['temperature', 'precipitation', 'is_rush_hour']] y = df['traffic_volume'] # Create models linear_model = LinearRegression() linear_model.fit(X, y) forest_model = RandomForestRegressor(n_estimators=100, random_state=42) forest_model.fit(X, y) class TrafficManagementApp: def __init__(self, root): # Initialization of GUI # ... def on_submit(self): # Handling traffic prediction submission # ... def update_graph(self, location, date_str, prediction): # Updating graph with historical and predicted traffic data # ... # Other methods for GUI components and functionality if __name__ == "__main__": root = tk.Tk() app = TrafficManagementApp(root) root.mainloop()
交通管理系统是城市规划者和交通管制员的一款复杂工具,将先进的预测分析与直观的图形界面相结合。通过预测交通模式和可视化数据趋势,系统增强决策能力并促进交通资源的主动管理。其人性化的设计确保了可访问性和实用性,使其成为现代城市基础设施管理中的宝贵资产。
以上是具有预测建模和可视化功能的综合交通管理系统的详细内容。更多信息请关注PHP中文网其他相关文章!