首页 > web前端 > js教程 > 正文

LeetCode 冥想:回文子串

王林
发布: 2024-07-21 09:16:09
原创
1035 人浏览过

LeetCode Meditations: Palindromic Substrings

回文子串的描述是:

给定一个字符串 s,返回其中回文子串的数量

当向后读与向前读相同时,字符串是回文

子字符串是字符串中连续的字符序列。

例如:

Input: s = "abc"
Output: 3
Explanation: Three palindromic strings: "a", "b", "c".
登录后复制

或者:

Input: s = "aaa"
Output: 6
Explanation: Six palindromic strings: "a", "a", "a", "aa", "aa", "aaa".
登录后复制

此外,约束表明 s 由小写英文字母组成。


在上一个问题中,我们找到了找到给定字符串中最长回文子串的解决方案。为了找到回文,我们使用了“中心扩展”方法,其中我们假设每个字符都是子字符串的中间字符。因此,我们移动了左右指针。

Note
Checking a palindrome is easy with two pointers approach, which we've seen before with Valid Palindrome.

计算一个子串中的回文数可能如下所示:

function countPalindromesInSubstr(s: string, left: number, right: number): number {
  let result = 0;
  while (left >= 0 && right < s.length && s[left] === s[right]) {
    result++;
    left--;
    right++;
  }

  return result;
}
登录后复制

只要我们在边界内(左 >= 0 && 右 < s.length),我们就会检查左右两个字符是否相同 - 如果是,我们会更新结果并移动我们的结果指点。

但是,一旦您考虑一下,指针初始化的索引很重要。例如,如果我们将字符串“abc”传递给 countPalindromesInSubstr,并且左指针位于 0,而右指针位于最后一个索引 (2),那么我们的结果就是 0。

请记住,我们假设每个字符都是子字符串的中间字符,并且由于每个单个字符也是一个子字符串,因此我们将初始化左指针和右指针以指向字符本身。

Note
A character by itself is considered palindromic, i.e., "abc" has three palindromic substrings: 'a', 'b' and 'c'.

Let's see how this process might look like.

If we have the string "abc", we'll first assume that 'a' is the middle of a substring:

"abc"

left = 0
right = 0
currentSubstr = 'a'

totalPalindromes = 1 // A single character is a palindrome
登录后复制

Then, we'll try to expand the substring to see if 'a' can be the middle character of another substring:

"abc"

left = -1
right = 1
currentSubstr = undefined

totalPalindromes = 1
登录后复制

Now that our left pointer is out of bounds, we can jump to the next character:

"abc"

left = 1
right = 1
currentSubstr = 'b'

totalPalindromes = 2
登录后复制

Now, we'll update our pointers, and indeed, 'b' can be the middle character of another substring:

s = "abc"

left = 0
right = 2
currentSubstr = 'abc'

totalPalindromes = 2
登录后复制

Well, currentSubstr is not a palindrome. Now we update our pointers again:

s = "abc"

left = -1
right = 3
currentSubstr = undefined

totalPalindromes = 2
登录后复制

And, we're out of bounds again. Time to move on to the next character:

s = "abc"

left = 2
right = 2
currentSubstr = 'c'

totalPalindromes = 3
登录后复制

Shifting our pointers, we'll be out of bounds again:

s = "abc"

left = 1
right = 3
currentSubstr = undefined

totalPalindromes = 3
登录后复制

Now that we've gone through each character, our final result of totalPalindromes is, in this case, 3. Meaning that there are 3 palindromic substrings in "abc".

However, there is an important caveat: each time we assume a character as the middle and initialize two pointers to the left and right of it, we're trying to find only odd-length palindromes. In order to mitigate that, instead of considering a single character as the middle, we can consider two characters as the middle and expand as we did before.

In this case, the process of finding the even-length substring palindromes will look like this — initially, our right pointer is left + 1:

s = "abc"

left = 0
right = 1
currentSubstr = 'ab'

totalPalindromes = 0
登录后复制

Then, we'll update our pointers:

s = "abc"

left = -1
right = 2
currentSubstr = undefined

totalPalindromes = 0
登录后复制

Out of bounds. On to the next character:

s = "abc"

left = 1
right = 2
currentSubstr = 'bc'

totalPalindromes = 0
登录后复制

Updating our pointers:

s = "abc"

left = 0
right = 3
currentSubstr = undefined

totalPalindromes = 0
登录后复制

The right pointer is out of bounds, so we go on to the next character:

s = "abc"

left = 2
right = 3
currentSubstr = undefined

totalPalindromes = 0
登录后复制

Once again we're out of bounds, and we're done going through each character. There are no palindromes for even-length substrings in this example.


We can write a function that does the work of counting the palindromes in each substring:

function countPalindromes(s: string, isOddLength: boolean): number {
  let result = 0;
  for (let i = 0; i < s.length; i++) {
    let left = i;
    let right = isOddLength ? i : i + 1;
    result += countPalindromesInSubstr(s, left, right);
  }

  return result;
}
登录后复制

In our main function, we can call countPalindromes twice for both odd and even length substrings, and return the result:

function countSubstrings(s: string): number {
  let result = 0;
  result += countPalindromes(s, true); // Odd-length palindromes
  result += countPalindromes(s, false); // Even-length palindromes

  return result;
}
登录后复制

Overall, our solution looks like this:

function countSubstrings(s: string): number {
  let result = 0;
  result += countPalindromes(s, true); // Odd-length palindromes
  result += countPalindromes(s, false); // Even-length palindromes

  return result;
}

function countPalindromes(s: string, isOddLength: boolean): number {
  let result = 0;
  for (let i = 0; i < s.length; i++) {
    let left = i;
    let right = isOddLength ? i : i + 1;
    result += countPalindromesInSubstr(s, left, right);
  }

  return result;
}

function countPalindromesInSubstr(s: string, left: number, right: number): number {
  let result = 0;
  while (left >= 0 && right < s.length && s[left] === s[right]) {
    result++;
    left--;
    right++;
  }

  return result;
}
登录后复制

Time and space complexity

The time complexity is O(n2)O(n^2) O(n2) as we go through each substring for each character (countPalindromes is doing an O(n2)O(n^2) O(n2) operation, we call it twice separately.)
The space complexity is O(1)O(1) O(1) as we don't have an additional data structure whose size will grow with the input size.


Next up is the problem called Decode Ways. Until then, happy coding.

以上是LeetCode 冥想:回文子串的详细内容。更多信息请关注PHP中文网其他相关文章!

来源:dev.to
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板