首页 > 科技周边 > 人工智能 > 神经网络也有空间意识!学会在Minecraft创建地图,登上Nature子刊

神经网络也有空间意识!学会在Minecraft创建地图,登上Nature子刊

王林
发布: 2024-07-24 09:38:12
原创
646 人浏览过

这是人类首次证明神经网络可以创建自己的地图。想象一下,你身处一个陌生的小镇,即使一开始周围的环境并不熟悉,你也可以四处探索,并最终在大脑中绘制出一张环境地图,里面包含建筑物、街道、标志等相互之间的位置关系。这种在大脑中构建空间地图的能力是人类更高级认知类型的基础:例如,有理论认为,语言是由大脑中类似地图的结构编码的。然而, 即使是最先进的人工智能和神经网络,也无法凭空构建这样的地图。 计算生物学助理教授、Heritage Medical 研究所研究员 Matt Thomson 说:「有一种感觉是,即使是最先进的人工智能模型,也不是真正的智能。它们不能像我们一样解决问题;不能证明未经证实的数学结果,也不能产生新的想法。」「我们认为,这是因为它们无法在概念空间中导航;解决复杂问题就像在概念空间中移动,就像导航一样。人工智能做的更像是死记硬背 —— 你给它一个输入,它给你一个回应。但它无法综合不同的想法。」 最近,Thomson 实验室的一篇新论文发现,神经网络可以使用一种叫做「预测编码」的算法来构建空间地图 。该论文于 7 月 18 日发表在《自然 - 机器智能》(Nature Machine Intelligence)杂志上。

神经网络也有空间意识!学会在Minecraft创建地图,登上Nature子刊

1. 论文地址:https://www.nature.com/articles/s42256-024-00863-1
  1. 代码地址:https://github.com/jgornet/predictive-coding-recovers-maps

研究生 James Gornet 带领团队在《我的世界》(Minecraft)中构建了环境,融入复杂元素(如树木、河流、洞穴)。他们录制了玩家随机穿越该区域的视频,并利用视频训练了一个配备预测编码算法的神经网络。

研究发现,神经网络学习了 Minecraft 世界中物体的组织方式,并能「预测」玩家在空间中移动时会遇到的环境。

神经网络也有空间意识!学会在Minecraft创建地图,登上Nature子刊

预测编码算法与 Minecraft 游戏的结合成功地「教会」了神经网络如何创建空间地图,并随后使用这些空间地图来预测视频的后续帧,结果预测图像与最终图像之间的均方误差仅为 0.094%。

更重要的是,研究小组「打开」了神经网络(相当于检查内部结构),发现各种物体的表征是相对于彼此进行空间存储的。换句话说,他们看到了存储在神经网络中的 Minecraft 环境地图。

神经网络可以导航人类设计者提供给它们的地图,例如使用 GPS 的自动驾驶汽车,但这是人类首次证明神经网络可以创建自己的地图。这种在空间上存储和组织信息的能力最终将帮助神经网络变得更加「聪明」,使它们能够像人类一样解决真正复杂的问题。

这个项目展示了人工智能真正的空间感知能力,而这在 OpenAI 的 Sora 等技术中仍然看不到,后者存在一些奇怪的故障。

James Gornet 是加州理工学院计算与神经系统(CNS)系的学生,该系涵盖神经科学、机器学习、数学、统计学和生物学。

「CNS 项目确实为 James 提供了一个地方,让他从事其他地方不可能完成的独特工作,」Thomson 说。「我们正在采用一种生物启发的机器学习方法,让我们能够在人工神经网络中反向设计大脑的特性,我们希望反过来了解大脑。在加州理工学院,我们有一个非常容易接受这类工作的社区。」

执行预测编码的神经网络

受预测编码推理问题中隐式空间表示的启发,研究者开发了一个预测编码智能体的计算实现,并研究了该智能体在探索虚拟环境时学习到的空间表示。

他们首先使用 Minecraft 中的 Malmo 环境创建了一个环境。物理环境的尺寸为 40 × 65 格单位,囊括了视觉场景的三个方面:一个山洞提供了一个全局视觉地标,一片森林使得视觉场景之间具有相似性,而一条带有桥梁的河流则限制了智能体如何穿越环境(图 1a)。

神经网络也有空间意识!学会在Minecraft创建地图,登上Nature子刊

1. 智能体遵循路径,路径由 A* 搜索确定,以找到随机取样位置之间的最短路径,并接收每条路径上的视觉图像。
  1. 为了进行预测编码,作者构建了一个编码器 - 解码器卷积神经网络,编码器采用 ResNet-18 架构,解码器采用转置卷积的 ResNet-18 架构(图 1b)。编码器 - 解码器架构使用 U-Net 架构将编码的潜在单元传递到解码器中。
  2. 多头注意力处理编码潜在单元序列,以编码过去的视觉观察历史。多头注意力有 h = 8 个头。对于维度为 D = C × H × W 的编码潜在单元,在高度 H、宽度 W 和通道 C 的情况下,单个头部的维度为 d = C × H × W/h。

    神经网络也有空间意识!学会在Minecraft创建地图,登上Nature子刊

    预测编码器采用均方误差最小化策略,拟合预测观测值与真实观测值之间的差异。

训练详情:

  • 样本数量:82,630
  • 轮次:200
  • 优化器:Nesterov 动量梯度下降
  • 权重衰减:5 × 10^(-6)
  • 初始学习率:10^(-1)
  • 学习率调度:OneCycle

训练后,预测编码器达到良好的视觉保真度,预测图像与真实图像之间的均方误差为 0.094(如图 1c 所示)。

神经网络也有空间意识!学会在Minecraft创建地图,登上Nature子刊

更多细节请参见原论文。

参考链接:

https://techxplore.com/news/2024-07-neural-network-minecraft.html

https://www.tomshardware.com/tech-industry/artificial-intelligence/neural-network-learns-to-make-maps-with-minecraft-code-available-on-github

以上是神经网络也有空间意识!学会在Minecraft创建地图,登上Nature子刊的详细内容。更多信息请关注PHP中文网其他相关文章!

相关标签:
来源:jiqizhixin.com
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板