精准狙击Llama 3.1?Mistral AI开源Large 2,123B媲美Llama 405B
Perlumbaan
AI semakin pantas seperti sebelum ini, dan berikutan pelancaran Meta semalam bagi model sumber terbuka baharunya Llama 3.1, syarikat permulaan AI Perancis Mistral AI telah menyertai pergaduhan itu.
Sebentar tadi, Mistral AI mengumumkan generasi akan datang model sumber terbuka utamanya: Mistral Large 2, yang mempunyai 123 bilion parameter dan setanding dengan model terkini daripada OpenAI dan Meta dari segi penjanaan kod, matematik, penaakulan, dan banyak lagi.
Susulan keluaran Llama 3.1 405B, keluaran Mistral Large 2 tiba-tiba menjadikan trek model besar sumber terbuka meriah, dan ciri model ini ialah - "cukup besar".
Secara khusus, walaupun bilangan parameter Mistral Large 2 lebih rendah daripada 405 bilion Llama 3.1, prestasi kedua-duanya hampir. Dan ia setanding dengan GPT-4o dan Anthropic's Claude 3.5 Sonnet dalam pelbagai penanda aras.
Pada Februari tahun ini, Mistral AI melancarkan model Besar asli, yang tetingkap konteksnya mengandungi 32,000 token Versi baharu model dibina atas dasar ini dan mempunyai tetingkap konteks yang lebih besar iaitu 128,000 (kira-kira setara. sebuah buku) buku 300 muka surat) - Memadankan GPT-4o dan GPT-4o OpenAI dan Llama 3.1 Meta.
Pada masa ini, Mistral Large 2 menyokong berdozen bahasa, termasuk Perancis, Jerman, Sepanyol, Itali, Portugis, Arab, Hindi, Rusia, Cina, Jepun dan Korea serta lebih daripada 80 bahasa pengaturcaraan, termasuk Python, Java, C, C++, JavaScript dan Bash.
Mistral AI menunjukkan bahawa model baharu akan terus menolak sempadan kecekapan kos, kelajuan dan prestasi, sambil menyediakan pengguna dengan keupayaan baharu, termasuk panggilan dan perolehan fungsi lanjutan, untuk membina aplikasi AI berprestasi tinggi.
Namun, perlu diingat bahawa walaupun Mistral Large 2 dibuka, ia terhad kepada penyelidikan dan penggunaan bukan komersial. Ia menyediakan pemberat terbuka, membolehkan pihak ketiga memperhalusi model mengikut keperluan mereka. Perjanjian ini merupakan had penting pada syarat penggunaan pengguna. Untuk kegunaan komersil yang memerlukan penggunaan sendiri Mistral Large 2, lesen komersial Mistral AI mesti diperolehi terlebih dahulu.
Prestasi
Pada pelbagai penunjuk penilaian, Mistral Large 2 telah menetapkan piawaian baharu dalam prestasi dan kos perkhidmatan. Terutama pada MMLU, versi pra-latihan mencapai ketepatan 84.0%.
Kod dan Penaakulan
Mistral AI melatih Mistral Large 2 pada sebahagian besar kod berdasarkan pengalaman sebelumnya dengan Codestral 22B dan Codestral Mamba.
Mistral Large 2 berprestasi jauh lebih baik daripada Mistral Large generasi sebelumnya dan setanding dengan model teratas seperti GPT-4o, Claude 3 Opus dan Llama 3 405B. . tidak relevan. Ini dicapai dengan memperhalusi model agar lebih berhati-hati dan tajam dalam tindak balasnya, memastikan ia memberikan output yang boleh dipercayai dan tepat.
Selain itu, Mistral Large 2 akan mengakui apabila ia tidak dapat mencari penyelesaian atau tidak mempunyai maklumat yang mencukupi untuk memberikan jawapan yang yakin. Pencarian ketepatan ini dicerminkan dalam prestasi model yang dipertingkatkan pada penanda aras matematik, dengan graf berikut menunjukkan keupayaan penaakulan dan penyelesaian masalah yang dipertingkatkan:
semua proses penilaian yang sama). L Ketepatan prestasi pada Multipl-E (kecuali untuk Kertas, semua model diuji dengan proses penilaian yang sama). .
Arahan untuk diikuti dan diselaraskan
Mistral AI 大幅提升了 Mistral Large 2 的指令遵循和对话能力。新的 Mistral Large 2 尤其擅长遵循精确指令和处理长时间的多轮对话。
以下是其在 MT-Bench、Wild Bench 和 Arena Hard 基准测试中的表现:
模型在通用对齐基准测试中的性能(所有模型均通过相同的评估 pipeline 进行测试)
在某些基准测试中,生成较长的回答往往会提高评分。然而,在许多商业应用中,简洁至关重要,这是因为简洁的模型生成能够加快交互速度,并降低推理成本。
所以 Mistral AI 花费了大量精力,确保生成的内容尽可能简明扼要。
下图展示了在 MT Bench 基准测试的问题上,不同模型生成的回答的平均长度:
语言多样性
当今大量的商业化应用场景涉及处理多语言文档。Mistral Large 2 在大量多语言数据上进行了训练,特别是在英语、法语、德语、西班牙语、意大利语、葡萄牙语、荷兰语、俄语、中文、日语、韩语、阿拉伯语和印地语方面都表现优异。
以下是 Mistral Large 2 在多语言 MMLU 基准测试中的性能结果,主要是与之前的 Mistral Large、Llama 3.1 模型以及 Cohere 的 Command R+ 的对比:
多语言 MMLU 性能(以基础预训练模型测量)
工具使用与函数调用
Mistral Large 2 配备了增强的函数调用和检索技能,经过训练能够熟练地执行并行和顺序函数调用,使其能够成为复杂业务应用程序的强大引擎。
下图为 Mistral Large 2 在函数调用上与其他主流模型的准确性对比:
试用 Mistral Large 2
用户可以通过 la Plateforme 上使用 Mistral Large 2,名称为 mistral-large-2407 ,并在 le Chat 上测试。它的版本是 24.07(Mistral 对所有模型采用的都是 YY.MM 版本编号系统),API 名称为 mistral-large-2407。
指令模型的权重已提供,托管在 HuggingFace 上。
权重链接:https://huggingface.co/mistralai/Mistral-Large-Instruct-2407
Mistral AI 正在将 la Plateforme 上的产品整合为两个通用模型:Mistral Nemo 和 Mistral Large,以及两个专业模型:Codestral 和 Embed。随着他们逐步淘汰 la Plateforme 上的旧模型,所有的 Apache 模型(包括 Mistral 7B、Mixtral 8x7B 和 8x22B、Codestral Mamba、Mathstral)仍然可以使用 Mistral AI 的 SDK——mistral-inference 和 mistral-finetune 进行部署和微调。
从今天开始,他们扩展了 la Plateforme 上的微调功能:现在,这些功能适用于 Mistral Large、Mistral Nemo 和 Codestral。
此外,Mistral AI 与云服务提供商都有合作,Mistral Large 2 将很快登陆这些平台。Mistral AI 扩大了与 Google Cloud Platform 的合作,通过 Managed API 将 Mistral AI 的模型引入 Vertex AI。与此同时,还可以在 Amazon Bedrock、Azure AI Studio 和 IBM watsonx.ai 上找到。
参考链接:
https://mistral.ai/news/mistral-large-2407/
https://venturebeat.com/ai/mistral-shocks-with-new-open-model-mistral-large-2-taking-on-llama-3-1/
https://techcrunch.com/2024/07/24/mistral-releases-large-2-meta-openai-ai-models/
以上是精准狙击Llama 3.1?Mistral AI开源Large 2,123B媲美Llama 405B的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

但可能打不过公园里的老大爷?巴黎奥运会正在如火如荼地进行中,乒乓球项目备受关注。与此同时,机器人打乒乓球也取得了新突破。刚刚,DeepMind提出了第一个在竞技乒乓球比赛中达到人类业余选手水平的学习型机器人智能体。论文地址:https://arxiv.org/pdf/2408.03906DeepMind这个机器人打乒乓球什么水平呢?大概和人类业余选手不相上下:正手反手都会:对手采用多种打法,该机器人也能招架得住:接不同旋转的发球:不过,比赛激烈程度似乎不如公园老大爷对战。对机器人来说,乒乓球运动

8月21日,2024世界机器人大会在北京隆重召开。商汤科技旗下家用机器人品牌“元萝卜SenseRobot”家族全系产品集体亮相,并最新发布元萝卜AI下棋机器人——国际象棋专业版(以下简称“元萝卜国象机器人”),成为全球首个走进家庭的国际象棋机器人。作为元萝卜的第三款下棋机器人产品,全新的国象机器人在AI和工程机械方面进行了大量专项技术升级和创新,首次在家用机器人上实现了通过机械爪拾取立体棋子,并进行人机对弈、人人对弈、记谱复盘等功能,

开学将至,该收心的不止有即将开启新学期的同学,可能还有AI大模型。前段时间,Reddit上挤满了吐槽Claude越来越懒的网友。「它的水平下降了很多,经常停顿,甚至输出也变得很短。在发布的第一周,它可以一次性翻译整整4页文稿,现在连半页都输出不了了!」https://www.reddit.com/r/ClaudeAI/comments/1by8rw8/something_just_feels_wrong_with_claude_in_the/在一个名为「对Claude彻底失望了的帖子里」,满满地

正在北京举行的世界机器人大会上,人形机器人的展示成为了现场绝对的焦点,在星尘智能的展台上,由于AI机器人助理S1在一个展区上演扬琴、武术、书法三台大戏,能文能武,吸引了大量专业观众和媒体的驻足。在带弹性的琴弦上的优雅演奏,让S1展现出速度、力度、精度兼具的精细操作和绝对掌控。央视新闻对「书法」背后的模仿学习和智能控制进行了专题报道,公司创始人来杰解释到,丝滑动作的背后,是硬件侧追求最好力控和最仿人身体指标(速度、负载等),而是在AI侧则采集人的真实动作数据,让机器人遇强则强,快速学习进化。而敏捷

本届ACL大会,投稿者「收获满满」。为期六天的ACL2024正在泰国曼谷举办。ACL是计算语言学和自然语言处理领域的顶级国际会议,由国际计算语言学协会组织,每年举办一次。一直以来,ACL在NLP领域的学术影响力都位列第一,它也是CCF-A类推荐会议。今年的ACL大会已是第62届,接收了400余篇NLP领域的前沿工作。昨天下午,大会公布了最佳论文等奖项。此次,最佳论文奖7篇(两篇未公开)、最佳主题论文奖1篇、杰出论文奖35篇。大会还评出了资源论文奖(ResourceAward)3篇、社会影响力奖(

视觉与机器人学习的深度融合。当两只机器手丝滑地互相合作叠衣服、倒茶、将鞋子打包时,加上最近老上头条的1X人形机器人NEO,你可能会产生一种感觉:我们似乎开始进入机器人时代了。事实上,这些丝滑动作正是先进机器人技术+精妙框架设计+多模态大模型的产物。我们知道,有用的机器人往往需要与环境进行复杂精妙的交互,而环境则可被表示成空间域和时间域上的约束。举个例子,如果要让机器人倒茶,那么机器人首先需要抓住茶壶手柄并使之保持直立,不泼洒出茶水,然后平稳移动,一直到让壶口与杯口对齐,之后以一定角度倾斜茶壶。这

会议简介随着科技的飞速发展,人工智能已经成为了推动社会进步的重要力量。在这个时代,我们有幸见证并参与到分布式人工智能(DistributedArtificialIntelligence,DAI)的创新与应用中。分布式人工智能是人工智能领域的重要分支,这几年引起了越来越多的关注。基于大型语言模型(LLM)的智能体(Agent)异军突起,通过结合大模型的强大语言理解和生成能力,展现出了在自然语言交互、知识推理、任务规划等方面的巨大潜力。AIAgent正在接棒大语言模型,成为当前AI圈的热点话题。Au

今天下午,鸿蒙智行正式迎来了新品牌与新车。 8月6日,华为举行鸿蒙智行享界S9及华为全场景新品发布会,带来了全景智慧旗舰轿车享界S9、问界新M7Pro和华为novaFlip、MatePadPro12.2英寸、全新MatePadAir、华为毕升激光打印机X1系列、FreeBuds6i、WATCHFIT3和智慧屏S5Pro等多款全场景智慧新品,从智慧出行、智慧办公到智能穿戴,华为全场景智慧生态持续构建,为消费者带来万物互联的智慧体验。鸿蒙智行:深度赋能,推动智能汽车产业升级华为联合中国汽车产业伙伴,为
