英伟达对话模型ChatQA进化到2.0版本,上下文长度提到128K
开放 LLM 社区正是百花齐放、竞相争鸣的时代,你能看到 Llama-3-70B-Instruct、QWen2-72B-Instruct、Nemotron-4-340B-Instruct、Mixtral-8x22BInstruct-v0.1 等许多表现优良的模型。但是,相比于以 GPT-4-Turbo 为代表的专有大模型,开放模型在很多领域依然还有明显差距。
在通用模型之外,也有一些专精关键领域的开放模型已被开发出来,比如用于编程和数学的 DeepSeek-Coder-V2、用于视觉 - 语言任务的 InternVL 1.5(其在某些领域可比肩 GPT-4-Turbo-2024-04-09)。
作为「AI 淘金时代的卖铲王」,英伟达自身也在为开放模型领域做贡献,比如其开发的 ChatQA 系列模型,参阅本站报道《英伟达新对话 QA 模型准确度超 GPT-4,却遭吐槽:无权重代码意义不大》。今年初,ChatQA 1.5 发布,其整合了检索增强式生成(RAG)技术,在对话问答方面的表现超过了 GPT-4。
现在,ChatQA 进化到 2.0 版,这一次改进的主要方向是扩展上下文窗口。
论文标题:ChatQA 2: Bridging the Gap to Proprietary LLMs in Long Context and RAG Capabilities
论文地址:https://arxiv.org/pdf/2407.14482
近段时间,扩展 LLM 的上下文窗口长度是一大研究和开发热点,比如本站曾报道过的《直接扩展到无限长,谷歌 Infini-Transformer 终结上下文长度之争》。
所有领先的专有 LLM 都支持非常大的上下文窗口 —— 你可以在单个 prompt 中向其灌输数百页文本。比如 GPT-4 Turbo 和 Claude 3.5 Sonnet 的上下文窗口大小分别为 128K 和 200K。而 Gemini 1.5 Pro 可支持 10M 长度的上下文,让人叹为观止。
不过开源大模型也在加紧追赶。比如 QWen2-72B-Instruct 和 Yi-34B 各自支持 128K 和 200K 的上下文窗口。但是,这些模型的训练数据和技术细节并未公开,因此很难去复现它们。此外,这些模型的评估大都基于合成任务,无法准确地代表在真实下游任务上的性能。比如,有多项研究表明开放 LLM 和领先的专有模型在真实世界长上下文理解任务上依然差距明显。
而英伟达的这个团队成功让开放的 Llama-3 在真实世界长上下文理解任务上的性能赶上了专有的 GPT-4 Turbo。
在 LLM 社区中,长上下文能力有时被认为是一种能与 RAG 竞争的技术。但实事求是地说,这些技术是可以相互增益的。
对具有长上下文窗口的 LLM 来说,根据下游任务以及准确度和效率之间的权衡,可以考虑在 prompt 附带大量文本,也可以使用检索方法从大量文本中高效地提取出相关信息。RAG 具有明显的效率优势,可为基于查询的任务轻松地从数十亿 token 中检索出相关信息。这是长上下文模型无法具备的优势。另一方面,长上下文模型却非常擅长文档总结等 RAG 可能并不擅长的任务。
因此,对一个先进的 LLM 来说,这两种能力都需要,如此才能根据下游任务以及准确度和效率需求来考虑使用哪一种。
此前,英伟达开源的 ChatQA 1.5 模型已经能在 RAG 任务上胜过 GPT-4-Turbo 了。但他们没有止步于此,如今又开源了 ChatQA 2,将足以比肩 GPT-4-Turbo 的长上下文理解能力也整合了进来!
具体来说,他们基于 Llama-3 模型,将其上下文窗口扩展到了 128K(与 GPT-4-Turbo 同等水平),同时还为其配备了当前最佳的长上下文检索器。
将上下文窗口扩展至 128K
那么,英伟达如何把 Llama-3 的上下文窗口从 8K 提升到了 128K?首先,他们基于 Slimpajama 准备了一个长上下文预训练语料库,使用的方法则来自 Fu et al. (2024) 的论文《Data engineering for scaling language models to 128k context》。
训练过程中他们还得到了一个有趣发现:相比于使用原有的起始和结束 token 这样的特殊字符来分隔不同文档的效果会更好。他们猜测,原因是 Llama-3 中的
使用长上下文数据进行指令微调
该团队还设计了一种可同时提升模型的长上下文理解能力和 RAG 性能的指令微调方法。
具体来说,这种指令微调方法分为三个阶段。前两个阶段与 ChatQA 1.5 一样,即首先在 128K 高质量指令遵从数据集训练模型,然后使用对话问答数据和所提供的上下文组成的混合数据进行训练。但是,这两个阶段涉及的上下文都比较短 —— 序列长度最大也不过 4K token。为了将模型的上下文窗口大小提升到 128K token,该团队收集了一个长监督式微调(SFT)数据集。
其采用了两种收集方式:
1. 对于短于 32k 的 SFT 数据序列:利用现有的基于 LongAlpaca12k 的长上下文数据集、来自 Open Orca 的 GPT-4 样本、Long Data Collections。
2. 对于序列长度在 32k 到 128k 之间的数据:由于收集此类 SFT 样本的难度很大,因此他们选择了合成数据集。他们使用了 NarrativeQA,其中既包含真实的总结(ground truth),也包含语义相关的段落。他们将所有相关段落组装到了一起,并随机插入真实总结以模拟用于问答对的真实长文档。
然后,将前两个阶段得到的全长的 SFT 数据集和短 SFT 数据集组合到一起,再进行训练。这里学习率设置为 3e-5,批量大小为 32。
长上下文检索器遇上长上下文 LLM
当前 LLM 使用的 RAG 流程存在一些问题:
1. 为了生成准确答案,top-k 逐块检索会引入不可忽略的上下文碎片。举个例子,之前最佳的基于密集嵌入的检索器仅支持 512 token。
2. 小 top-k(比如 5 或 10)会导致召回率相对较低,而大 top-k(比如 100)则会导致生成结果变差,因为之前的 LLM 无法很好地使用太多已分块的上下文。
为了解决这个问题,该团队提出使用最近期的长上下文检索器,其支持成千上万 token。具体来说,他们选择使用 E5-mistral 嵌入模型作为检索器。
表 1 比较了 top-k 检索的不同块大小和上下文窗口中的 token 总数。
比较 token 数从 3000 到 12000 的变化情况,该团队发现 token 越多,结果越好,这就确认了新模型的长上下文能力确实不错。他们还发现,如果总 token 数为 6000,则成本和性能之间会有比较好的权衡。当将总 token 数设定为 6000 后,他们又发现文本块越大,结果越好。因此,在实验中,他们选择的默认设置是块大小为 1200 以及 top-5 的文本块。
实验
评估基准
为了进行全面的评估,分析不同的上下文长度,该团队使用了三类评估基准:
1. 长上下文基准,超过 100K token;
2. 中等长上下文基准,低于 32K token;
3. 短上下文基准,低于 4K token。
如果下游任务可以使用 RAG,便会使用 RAG。
结果
该团队首先进行了基于合成数据的 Needle in a Haystack(大海捞针)测试,然后测试了模型的真实世界长上下文理解和 RAG 能力。
1. 大海捞针测试
Llama3-ChatQA-2-70B 能否在文本之海中找到目标针?这是一个常用于测试 LLM 长上下文能力的合成任务,可看作是在评估 LLM 的阈值水平。图 1 展示了新模型在 128K token 中的表现,可以看到新模型的准确度达到了 100%。该测试证实新模型具有堪称完美的长上下文检索能力。
2. 超过 100K token 的长上下文评估
在来自 InfiniteBench 的真实世界任务上,该团队评估了模型在上下文长度超过 100K token 时的性能表现。结果见表 2。
可以看到,新模型的表现优于许多当前最佳模型,比如 GPT4-Turbo-2024-04-09 (33.16)、GPT4-1106 preview (28.23)、Llama-3-70B-Instruct-Gradient-262k (32.57) 和 Claude 2 (33.96)。此外,新模型的成绩也已经非常接近 Qwen2-72B-Instruct 得到的最高分数 34.88。整体来看,英伟达的这个新模型颇具竞争力。
3. token 数在 32K 以内的中等长上下文评估
表 3 给出了上下文的 token 数在 32K 以内时各模型的性能表现。
可以看到,GPT-4-Turbo-2024-04-09 的分数最高,为 51.93。新模型的分数为 47.37,比 Llama-3-70B-Instruct-Gradient-262k 高,但低于 Qwen2-72B-Instruct。原因可能是 Qwen2-72B-Instruct 的预训练大量使用了 32K token,而该团队使用的持续预训练语料库小得多。此外,他们还发现所有 RAG 解决方案的表现都逊于长上下文解决方案,这表明所有这些当前最佳的长上下文 LLM 都可以在其上下文窗口内处理 32K token。
4. ChatRAG Bench:token 数低于 4K 的短上下文评估
在 ChatRAG Bench 上,该团队评估了模型在上下文长度少于 4K token 时的性能表现,见表 4。
新模型的平均分数为 54.81。尽管这个成绩不及 Llama3-ChatQA-1.5-70B,但依然优于 GPT-4-Turbo-2024-04-09 和 Qwen2-72B-Instruct。这证明了一点:将短上下文模型扩展成长上下文模型是有代价的。这也引出了一个值得探索的研究方向:如何进一步扩展上下文窗口同时又不影响其在短上下文任务上的表现?
5. 对比 RAG 与长上下文
表 5 和表 6 比较了使用不同的上下文长度时,RAG 与长上下文解决方案的表现。当序列长度超过 100K 时,仅报告了 En.QA 和 En.MC 的平均分数,因为 RAG 设置无法直接用于 En.Sum 和 En.Dia。
可以看到,当下游任务的序列长度低于 32K 时,新提出的长上下文解决方案优于 RAG。这意味着使用 RAG 可以节省成本,但准确度会有所下降。
另一方面,当上下文长度超过 100K 时,RAG(Llama3-ChatQA-2-70B 使用 top-5,Qwen2-72B-Instruct 使用 top-20)优于长上下文解决方案。这意味着当 token 数超过 128K 时,即使当前最佳的长上下文 LLM,可能也难以实现有效的理解和推理。该团队建议在这种情况下,能使用 RAG 就尽量使用 RAG,因为其能带来更高的准确度和更低的推理成本。
以上是英伟达对话模型ChatQA进化到2.0版本,上下文长度提到128K的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

在现代制造业中,精准的缺陷检测不仅是保证产品质量的关键,更是提升生产效率的核心。然而,现有的缺陷检测数据集常常缺乏实际应用所需的精确度和语义丰富性,导致模型无法识别具体的缺陷类别或位置。为了解决这一难题,由香港科技大学广州和思谋科技组成的顶尖研究团队,创新性地开发出了“DefectSpectrum”数据集,为工业缺陷提供了详尽、语义丰富的大规模标注。如表一所示,相比其他工业数据集,“DefectSpectrum”数据集提供了最多的缺陷标注(5438张缺陷样本),最细致的缺陷分类(125种缺陷类别

开放LLM社区正是百花齐放、竞相争鸣的时代,你能看到Llama-3-70B-Instruct、QWen2-72B-Instruct、Nemotron-4-340B-Instruct、Mixtral-8x22BInstruct-v0.1等许多表现优良的模型。但是,相比于以GPT-4-Turbo为代表的专有大模型,开放模型在很多领域依然还有明显差距。在通用模型之外,也有一些专精关键领域的开放模型已被开发出来,比如用于编程和数学的DeepSeek-Coder-V2、用于视觉-语言任务的InternVL

编辑|KX时至今日,晶体学所测定的结构细节和精度,从简单的金属到大型膜蛋白,是任何其他方法都无法比拟的。然而,最大的挑战——所谓的相位问题,仍然是从实验确定的振幅中检索相位信息。丹麦哥本哈根大学研究人员,开发了一种解决晶体相问题的深度学习方法PhAI,利用数百万人工晶体结构及其相应的合成衍射数据训练的深度学习神经网络,可以生成准确的电子密度图。研究表明,这种基于深度学习的从头算结构解决方案方法,可以以仅2埃的分辨率解决相位问题,该分辨率仅相当于原子分辨率可用数据的10%到20%,而传统的从头算方

对于AI来说,奥数不再是问题了。本周四,谷歌DeepMind的人工智能完成了一项壮举:用AI做出了今年国际数学奥林匹克竞赛IMO的真题,并且距拿金牌仅一步之遥。上周刚刚结束的IMO竞赛共有六道赛题,涉及代数、组合学、几何和数论。谷歌提出的混合AI系统做对了四道,获得28分,达到了银牌水平。本月初,UCLA终身教授陶哲轩刚刚宣传了百万美元奖金的AI数学奥林匹克竞赛(AIMO进步奖),没想到7月还没过,AI的做题水平就进步到了这种水平。IMO上同步做题,做对了最难题IMO是历史最悠久、规模最大、最负

2023年,几乎AI的每个领域都在以前所未有的速度进化,同时,AI也在不断地推动着具身智能、自动驾驶等关键赛道的技术边界。多模态趋势下,Transformer作为AI大模型主流架构的局面是否会撼动?为何探索基于MoE(专家混合)架构的大模型成为业内新趋势?大型视觉模型(LVM)能否成为通用视觉的新突破?...我们从过去的半年发布的2023年本站PRO会员通讯中,挑选了10份针对以上领域技术趋势、产业变革进行深入剖析的专题解读,助您在新的一年里为大展宏图做好准备。本篇解读来自2023年Week50

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

编辑|KX逆合成是药物发现和有机合成中的一项关键任务,AI越来越多地用于加快这一过程。现有AI方法性能不尽人意,多样性有限。在实践中,化学反应通常会引起局部分子变化,反应物和产物之间存在很大重叠。受此启发,浙江大学侯廷军团队提出将单步逆合成预测重新定义为分子串编辑任务,迭代细化目标分子串以生成前体化合物。并提出了基于编辑的逆合成模型EditRetro,该模型可以实现高质量和多样化的预测。大量实验表明,模型在标准基准数据集USPTO-50 K上取得了出色的性能,top-1准确率达到60.8%。

小模型崛起了。上个月,Meta发布了Llama3.1系列模型,其中包括Meta迄今为止最大的405B模型,以及两个较小的模型,参数量分别为700亿和80亿。Llama3.1被认为是引领了开源新时代。然而,新一代的模型虽然性能强大,但部署时仍需要大量计算资源。因此,业界出现了另一种趋势,即开发小型语言模型(SLM),这种模型在许多语言任务中表现足够出色,部署起来也非常便宜。最近,英伟达研究表明,结构化权重剪枝与知识蒸馏相结合,可以从初始较大的模型中逐步获得较小的语言模型。图灵奖得主、Meta首席A
