万亿token!史上最大多模态数据集诞生

WBOY
发布: 2024-07-28 09:38:23
原创
822 人浏览过

开源多模态大模型或将开始腾飞。

万亿token!史上最大多模态数据集诞生

值此 Llama 3.1 占领各大头条之际,又突然冒出了另一个也非常重要的发布 —— 一个规模空前的开源多模态数据集。

对大模型来说,数据集的重要性无需多言,甚至可以说没有大型数据集就不可能有大模型。现在正是多模态大模型(LMM)发展正盛的时候,规模足够大的优质且开源的多模态数据集已经成为该领域的一大「刚需」。

不过,相比于开源的文本数据集,现有的开源多模态数据集都比较小、多样性也不足,并且来源基本都是 HTML 文档 —— 这就限制了数据的广度和多样性。这无疑限制了开源 LMM 的发展,让开源 LMM 与闭源 LMM 之间的差异变得非常大。

近日,华盛顿大学、Salesforce Research 和斯坦福大学等机构的联合团队填补了这一空白,构建了一个万亿 token 级的交织多模态的开源数据集 MINT-1T(Multimodal INTerleaved)。毫无疑问,这是目前最大的开源多模态数据集。
万亿token!史上最大多模态数据集诞生
  • 数据集地址:https://github.com/mlfoundations/MINT-1T
  • 论文地址:https://arxiv.org/abs/2406.11271
  • 论文标题:MINT-1T: Scaling Open-Source Multimodal Data by 10x: A Multimodal Dataset with One Trillion Tokens

MINT-1T 共包含一万亿文本 token 和三十亿张图像,并且其有 HTML/PDF/ArXiv 等多种不同来源。在 MINT-1T 问世之前,该领域最大的开源数据集是 OBELICS,其包含 1150 亿文本 token 和 3.53 亿张图像,并且来源只有 HTML。图 1 比较了这些数据集。
万亿token!史上最大多模态数据集诞生
数据集的构建

首先,该团队从多样化的来源(包括 HTML、PDF、ArXiv)收集了大量多模态数据,图 2 展示了这些不同来源的多模态文档样本。
万亿token!史上最大多模态数据集诞生
然后,为了提高数据质量和安全性,他们执行了文本质量过滤、图像过滤、安全过滤(包括去除 NSFW 图像和可识别个人身份的信息)以及去重。图 3 简要展示了这些数据过滤过程。
万亿token!史上最大多模态数据集诞生
最终,他们得到的 MINT-1T 数据集包含 9220 亿 HTML token、1060 亿 PDF token 和 90 亿 ArXiv token。值得注意的是,整个数据处理过程耗费了大约 420 万 CPU 小时数。表 1 对比了一些常见的开源或闭源多模态数据集。
万亿token!史上最大多模态数据集诞生
模型实验

该团队也实验了使用该数据集训练多模态模型的效果,并与其它数据集进行了比较。

他们使用的模型架构是 Salesforce 的 XGen-MM,评估的则是模型在数据集上学习之后的上下文学习和多图像推理能力。评估基准包括:视觉描述基准(COCO 和 TextCaps)、视觉问答基准(VQAv2、OK-VQA、TextVQA 和 VizWiz)、多图像推理基准(MMMU 和 Mantis-Eval)。

实验结果

在 HTML 文档上训练

该团队首先对比了 MINT-1T 的 HTML 部分与 OBELICS;因为 OBELICS 是之前领先的多模态数据集并且也是基于 HTML 文档,他们基于这两个数据集分别用 100 亿多模态 token 训练了两个模型,并评估了它们的上下文学习性能。

表 2 给出了在常见基准上的 4-shot 和 8-shot 性能。
万亿token!史上最大多模态数据集诞生
可以看到,对于 VQA(视觉问答)任务,在 MINT-1T HTML 文档上训练的模型表现优于在 OBELICS 训练的模型,但前者在视觉描述任务上表现更差一些。平均而言,OBELICS 比 MINT-1T (HTML) 略好一点。

PDF- und ArXiv-Dokumente hinzufügen

Danach testete das Team den vollständigen MINT-1T-Datensatz, der gleichzeitig HTML-, PDF- und ArXiv-Dokumente enthält. Sie probieren typischerweise 10 Milliarden multimodale Token aus, 50 % aus HTML, 45 % aus PDF und 5 % aus ArXiv.

Die Ergebnisse sind auch in Tabelle 2 aufgeführt. Es ist ersichtlich, dass das auf MINT-1T-Mischdaten trainierte Modell bei den meisten Benchmarks das auf OBELICS und MINT-1T (HTML) trainierte Modell übertrifft.

Bei komplexeren multimodalen Argumentationsaufgaben ist das mit MINT-1T trainierte Modell besser als das mit OBELICS auf MMMU trainierte Modell, aber nicht so gut wie der Mantis-Eval-Benchmark letztere.
万亿token!史上最大多模态数据集诞生
Weitere detaillierte Tests und die Auswirkungen der Modellarchitektur finden Sie im Originalpapier.

Kann dieser extrem große, multimodale Open-Source-Datensatz zum Ausgangspunkt einer Reihe von Legenden werden und schließlich eine multimodale große Modellreihe wie die Llama-Modellreihe schaffen? Warten wir ab.

以上是万亿token!史上最大多模态数据集诞生的详细内容。更多信息请关注PHP中文网其他相关文章!

来源:jiqizhixin.com
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板