Nature子刊,北大团队通用AI框架对蛋白-蛋白对接进行综合结构预测,弥合实验与计算的差距
编辑 | 萝卜皮
蛋白质复合物结构预测在药物研发、抗体设计等应用中发挥着重要作用,然而由于预测精度有限,预测结果与实验结果经常出现不一致。
北京大学、昌平实验室以及哈佛大学的研究团队提出了 ColabDock,这是一个通用框架,它采用深度学习结构预测模型来整合不同形式和来源的实验约束,而无需进一步进行大规模的再训练或微调。
ColabDock 的表现优于使用 AlphaFold2 作为结构预测模型的 HADDOCK 和 ClusPro,不止在具有模拟残基和表面限制的复杂结构预测中,在借助核磁共振化学位移扰动以及共价标记进行的结构预测中也是如此。
另外,它还可以通过模拟界面扫描限制来帮助抗体-抗原界面预测。
该研究以「Integrated structure prediction of protein–protein docking with experimental restraints using ColabDock」为题,于 2024 年 8 月 5 日发布在《Nature Machine Intelligence》。
蛋白质对接为理解生物机制提供了重要的结构信息。尽管深度模型在蛋白质结构预测方面发展迅速,但大多数模型都是以自由对接的方式进行预测,这可能会导致实验约束与预测结构不一致。
为了解决这个问题,北京大学、昌平实验室等机构的研究团队提出了用于受限复合物构象预测的通用框架——ColabDock,它是一个由稀疏实验约束引导的蛋白质-蛋白质对接的通用框架。
通过梯度反向传播,该方法有效地整合了实验约束的先验和数据驱动的蛋白质结构预测模型的能量景观,自动搜索满足两者的构象,同时容忍约束中的冲突或模糊性。
ColabDock 可以利用不同形式和来源的实验约束,而无需进一步进行大规模重新训练或微调。
该框架包含两个阶段:生成阶段和预测阶段。
在生成阶段,ColabDock 采用了基于 AlphaFold2 开发的蛋白质设计框架 ColabDesign。在 logit 空间中优化输入序列配置文件,以指导结构预测模型根据给定的实验约束和模板生成复杂结构,同时最大化 pLDDT 和 pAE 测量。
在预测阶段,根据生成的复合物结构和给定的模板预测结构。对于每个目标,ColabDock 会执行多次运行并生成不同的构象。最终构象由排序支持向量机 (SVM) 算法选择。
性能稳健
作为概念验证,研究人员采用 AlphaFold2 作为 ColabDock 中的结构预测模型。当然,这里也可以使用其他数据驱动的深度学习模型,例如 RoseTTAFold2 和 AF-Multimer。
研究人员用合成数据集和几种类型的实验约束上测试 ColabDock,包括 NMR 化学位移扰动 (CSP)、共价标记 (CL) 和模拟深度突变扫描 (DMS)。
图示:ColabDock 在验证集上的表现。(来源:论文)
ColabDock 评估了两种类型的约束,即 1v1 和 MvN 约束。前者是残基-残基级别的,实例包括来自 XL-MS 的约束。后者是界面级别的,与 NMR 和 CL 实验有关。
在合成数据集上的测试结果表明 ColabDock 取得了令人满意的性能。此外,正如预期的那样,随着约束数量的增加,ColabDock 的性能也得到了提高。
即使只有很少的限制,ColabDock 在基准数据集和相同的框架设置上的表现也优于 AF-Multimer,并且在提供更多限制的情况下收敛到更少的构象,表明有效应用了附加信息。
图示:在基准测试集上对 ColabDock、HADDOCK 和 ClusPro 进行比较。(来源:论文)
Compared with HADDOCK and ClusPro, ColabDock performs better when the constraint quality is higher. On both experimental datasets, ColabDock still outperforms HADDOCK and ClusPro regardless of the number and quality of constraints provided.
Illustration: Performance and constraint analysis of ColabDock on CSP set. (Source: paper)
Finally, the researchers evaluated the performance of different docking methods on the antibody-antigen data set. ColabDock predicted a much higher proportion of medium or higher quality structures than HADDOCK and ClusPro.
Illustration: Comparison of ColabDock, HADDOCK and ClusPro on the antibody-antigen benchmark set. (Source: paper)
This shows that ColabDock has potential application value in antibody design. Moreover, ColabDock still shows comparable or even better performance than AF-Multimer on the newly released unbiased dataset.
Limitations and Conclusion
ColabDock also has some limitations. Currently, ColabDock can only accept distances smaller than 22 Å, which is determined by the upper limit of the distance map in AlphaFold2. This limitation renders the model applicable to only a small subset of XL-MS reagents.
Without fragment-based optimization, ColabDock can only process complexes of less than 1,200 residues on an NVIDIA A100 graphics processing unit (GPU) due to limited memory.
In addition, this method can be very time-consuming, especially for large protein complexes. Using the bfloat16 floating point format version of AlphaFold2 is expected to help save memory and speed up calculations.
I believe that in the future, after researchers iteratively optimize it, as a unified framework, ColabDock will be able to help bridge the gap between experimental and computational protein science.
Paper link:https://www.nature.com/articles/s42256-024-00873-z
以上是Nature子刊,北大团队通用AI框架对蛋白-蛋白对接进行综合结构预测,弥合实验与计算的差距的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

但可能打不过公园里的老大爷?巴黎奥运会正在如火如荼地进行中,乒乓球项目备受关注。与此同时,机器人打乒乓球也取得了新突破。刚刚,DeepMind提出了第一个在竞技乒乓球比赛中达到人类业余选手水平的学习型机器人智能体。论文地址:https://arxiv.org/pdf/2408.03906DeepMind这个机器人打乒乓球什么水平呢?大概和人类业余选手不相上下:正手反手都会:对手采用多种打法,该机器人也能招架得住:接不同旋转的发球:不过,比赛激烈程度似乎不如公园老大爷对战。对机器人来说,乒乓球运动

8月21日,2024世界机器人大会在北京隆重召开。商汤科技旗下家用机器人品牌“元萝卜SenseRobot”家族全系产品集体亮相,并最新发布元萝卜AI下棋机器人——国际象棋专业版(以下简称“元萝卜国象机器人”),成为全球首个走进家庭的国际象棋机器人。作为元萝卜的第三款下棋机器人产品,全新的国象机器人在AI和工程机械方面进行了大量专项技术升级和创新,首次在家用机器人上实现了通过机械爪拾取立体棋子,并进行人机对弈、人人对弈、记谱复盘等功能,

开学将至,该收心的不止有即将开启新学期的同学,可能还有AI大模型。前段时间,Reddit上挤满了吐槽Claude越来越懒的网友。「它的水平下降了很多,经常停顿,甚至输出也变得很短。在发布的第一周,它可以一次性翻译整整4页文稿,现在连半页都输出不了了!」https://www.reddit.com/r/ClaudeAI/comments/1by8rw8/something_just_feels_wrong_with_claude_in_the/在一个名为「对Claude彻底失望了的帖子里」,满满地

正在北京举行的世界机器人大会上,人形机器人的展示成为了现场绝对的焦点,在星尘智能的展台上,由于AI机器人助理S1在一个展区上演扬琴、武术、书法三台大戏,能文能武,吸引了大量专业观众和媒体的驻足。在带弹性的琴弦上的优雅演奏,让S1展现出速度、力度、精度兼具的精细操作和绝对掌控。央视新闻对「书法」背后的模仿学习和智能控制进行了专题报道,公司创始人来杰解释到,丝滑动作的背后,是硬件侧追求最好力控和最仿人身体指标(速度、负载等),而是在AI侧则采集人的真实动作数据,让机器人遇强则强,快速学习进化。而敏捷

本届ACL大会,投稿者「收获满满」。为期六天的ACL2024正在泰国曼谷举办。ACL是计算语言学和自然语言处理领域的顶级国际会议,由国际计算语言学协会组织,每年举办一次。一直以来,ACL在NLP领域的学术影响力都位列第一,它也是CCF-A类推荐会议。今年的ACL大会已是第62届,接收了400余篇NLP领域的前沿工作。昨天下午,大会公布了最佳论文等奖项。此次,最佳论文奖7篇(两篇未公开)、最佳主题论文奖1篇、杰出论文奖35篇。大会还评出了资源论文奖(ResourceAward)3篇、社会影响力奖(

视觉与机器人学习的深度融合。当两只机器手丝滑地互相合作叠衣服、倒茶、将鞋子打包时,加上最近老上头条的1X人形机器人NEO,你可能会产生一种感觉:我们似乎开始进入机器人时代了。事实上,这些丝滑动作正是先进机器人技术+精妙框架设计+多模态大模型的产物。我们知道,有用的机器人往往需要与环境进行复杂精妙的交互,而环境则可被表示成空间域和时间域上的约束。举个例子,如果要让机器人倒茶,那么机器人首先需要抓住茶壶手柄并使之保持直立,不泼洒出茶水,然后平稳移动,一直到让壶口与杯口对齐,之后以一定角度倾斜茶壶。这

会议简介随着科技的飞速发展,人工智能已经成为了推动社会进步的重要力量。在这个时代,我们有幸见证并参与到分布式人工智能(DistributedArtificialIntelligence,DAI)的创新与应用中。分布式人工智能是人工智能领域的重要分支,这几年引起了越来越多的关注。基于大型语言模型(LLM)的智能体(Agent)异军突起,通过结合大模型的强大语言理解和生成能力,展现出了在自然语言交互、知识推理、任务规划等方面的巨大潜力。AIAgent正在接棒大语言模型,成为当前AI圈的热点话题。Au

今天下午,鸿蒙智行正式迎来了新品牌与新车。 8月6日,华为举行鸿蒙智行享界S9及华为全场景新品发布会,带来了全景智慧旗舰轿车享界S9、问界新M7Pro和华为novaFlip、MatePadPro12.2英寸、全新MatePadAir、华为毕升激光打印机X1系列、FreeBuds6i、WATCHFIT3和智慧屏S5Pro等多款全场景智慧新品,从智慧出行、智慧办公到智能穿戴,华为全场景智慧生态持续构建,为消费者带来万物互联的智慧体验。鸿蒙智行:深度赋能,推动智能汽车产业升级华为联合中国汽车产业伙伴,为
