在 AWS 中转换文件更快、更便宜:Polar 或 Pandas?

王林
发布: 2024-08-11 13:10:32
原创
1211 人浏览过

两者都提供了广泛的工具和优势,这可能会让我们在某些时候怀疑选择两者中的哪一个。这并不是要改变公司的所有流程,以便他们开始使用 Polars 或 Pandas“死亡”(这不会在不久的将来发生)。这是关于了解其他可以帮助我们降低流程成本和时间、获得相同或更好结果的工具。

当我们使用云服务时,我们会优先考虑某些因素,包括其成本。我用于此过程的服务是带有 Python 3.10 运行时的 AWS Lambda 和用于存储原始文件和 parquet 转换文件的 S3。

目的是获取 CSV 文件作为原始数据,并使用 pandas 和 Polars 对其进行处理,以验证这两个库中的哪一个可以为我们提供更好的资源优化,例如内存和结果文件的重量。

熊猫
它是一个专门用于数据操作和分析的 Python 库,用 C 语言编写,首次发布于 2008 年。

*极地*
它是一个专门从事数据操作和分析的 Python 和 Rust 库,允许并行处理,主要用 Rust 编写,于 2022 年发布。

流程架构:

¿Qué es más rápido y económico para convertir archivos en AWS: Polar o Pandas?

该项目很简单,如架构所示:用户将 CSV 文件存储在 work/pandas 或 work/porlas 中,并自动启动 s3 触发器来处理该文件,将其转换为 parquet 并将其存储在processed中。

在这个小项目中,我使用了两个具有以下配置的 lambda:
内存:2GB
临时内存:2 GB
续航时间:600秒

要求
Lambda 与 pandas:Pandas、Numpy 和 Pyarrow
Lambda 与极坐标:极坐标

用于比较的数据集可以在 kaggle 上以“Rotten Tomatoes Movie Reviews – 1.44M rows”的名称找到,或者可以从这里下载。

完整的存储库可在 GitHub 上找到,并且可以在此处克隆。

尺寸或重量
Pandas 使用的 lambda 需要另外两个插件来创建 parquet 文件,在本例中是 PyArrow 和我使用的 Pandas 版本的特定版本的 numpy。结果,我们获得了一个权重或大小为 74.4 MB 的 lambda,这非常接近 AWS 允许我们实现的 lambda 权重限制。

带有 Polars 的 lambda 不需要像 PyArrow 这样的其他插件,它简化了生活并将 lambda 的大小减少到一半以下。因此,与第一个 lambda 相比,我们的 lambda 的权重或大小为 30.6 MB,为我们提供了安装转换过程可能需要的其他依赖项的空间。

表演

¿Qué es más rápido y económico para convertir archivos en AWS: Polar o Pandas?
在第一个版本之后,带有 Pandas 的 lambda 被优化为使用压缩,但是,还分析了其行为。
熊猫
与其他版本相比,处理数据集花了 18 秒,并使用了 1894 MB 内存来处理 CSV 文件并生成 Parquet 文件,这是使用最多时间和资源的版本。

熊猫 + 压缩
添加一行代码使我们比之前的版本(Pandas)有了一点改进,处理数据集花了 17 秒,使用了 1837 MB,这并不代表处理和计算时间的显着改进,而是大小的显着改进。生成的文件。

北极
处理相同的数据集花了 12 秒,我只使用了 1462 MB,与前两者相比,节省了 44.44% 的时间,并且内存消耗更低。

输出文件大小

¿Qué es más rápido y económico para convertir archivos en AWS: Polar o Pandas?
熊猫
未建立压缩过程的 lambda 生成了 177.4 MB 的 parquet 文件。

熊猫 + 压缩
在 lambda 中配置压缩时,我不会生成 121.1 MB 的 parquet 文件。一小行或一个选项帮助我们将文件大小减少了 31.74%。考虑到这不是重大的代码更改,这是一个非常好的选择。

北极
Polars 生成了一个 105.8 MB 的文件,与 Pandas 第一个版本一起购买时,与经过压缩的 Pandas 版本相比,该文件分别节省了 40.36% 和 12.63%。

结论
没有必要改变所有使用 Pandas 的内部流程,以便它们现在使用 Polars,但是,重要的是要考虑到,如果我们谈论数千或数百万个 lambda 执行,使用 Polars 不仅会帮助我们进行部署时间,但由于 AWS 对 Lambda 等无服务器服务按时间收费,也将帮助我们降低成本。
同样,当我们将 40.36% 转换为数百万个文件时,我们谈论的是 GB 或 TB,这会对 Datalake 或 Dataware house 甚至冷文件存储产生重大影响。

Polars 的减少不仅限于这两个因素,因为它会极大地影响 AWS 的数据和/或对象的输出,因为它是一项确实有成本的服务。

以上是在 AWS 中转换文件更快、更便宜:Polar 或 Pandas?的详细内容。更多信息请关注PHP中文网其他相关文章!

来源:dev.to
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板