首页 web前端 js教程 使用 Three.js 的太阳能系统

使用 Three.js 的太阳能系统

Aug 22, 2024 pm 06:57 PM

嗨!今天,我将使用 Three.js 构建一个太阳能系统。但在我们开始之前,您应该知道本文的灵感来自于我目前正在从事的项目的客户代表。是的,那就是你——相信地球是平的。

JavaScript/Node 拥有最大的库生态系统,涵盖大量可简化开发的功能,因此我始终可以选择哪个更适合您的目的。然而,如果我们谈论 3D 图形,没有那么多酷的选择,而 Three.js 可能是其中最好的,并且拥有最大的社区。

所以让我们深入研究 Three.js 并使用它构建 Solar 系统。在这篇文章中我将介绍:

  • 初始化项目和场景
  • 创造太阳
  • 创造行星
  • 部署到 GitHub Pages

初始化项目和场景

首先要做的事情:为了初始化项目,我使用 Vite 并安装 Three.js 依赖项。现在的问题是如何设置 Three.js。为此,您需要三样东西:场景、相机和渲染器。我还使用内置插件 OrbitControls,它允许我在场景中导航。启动应用程序后,应该会出现黑屏。

import { Scene, WebGLRenderer, PerspectiveCamera } from "three";
import { OrbitControls } from "three/addons/controls/OrbitControls.js";

const w = window.innerWidth;
const h = window.innerHeight;

const scene = new Scene();
const camera = new PerspectiveCamera(75, w / h, 0.1, 100);
const renderer = new WebGLRenderer();
const controls = new OrbitControls(camera, renderer.domElement);

controls.minDistance = 10;
controls.maxDistance = 60;
camera.position.set(30 * Math.cos(Math.PI / 6), 30 * Math.sin(Math.PI / 6), 40);

renderer.setSize(w, h);
document.body.appendChild(renderer.domElement);

renderer.render(scene, camera);

window.addEventListener("resize", () => {
  const w = window.innerWidth;
  const h = window.innerHeight;
  renderer.setSize(w, h);
  camera.aspect = w / h;
  camera.updateProjectionMatrix();
});

const animate = () => {
  requestAnimationFrame(animate);
  controls.update();
  renderer.render(scene, camera);
};

animate();
登录后复制

您可能会注意到,我通过控件限制了缩放,并且还更改了相机的默认角度。这将有助于后续步骤中正确显示场景。

现在是时候添加一个简单的星空了,因为我们的太阳系应该被恒星包围。为了简化说明,假设您有一个球体,并且在该球体上随机选取 1,000 个点。然后,通过将星形纹理映射到这些点上来创建星形。最后,我添加动画以使所有这些点绕 y 轴旋转。这样,星空就可以添加到场景中了。

import {
  Group,
  Color,
  Points,
  Vector3,
  TextureLoader,
  PointsMaterial,
  BufferGeometry,
  AdditiveBlending,
  Float32BufferAttribute,
} from "three";

export class Starfield {
  group;
  loader;
  animate;

  constructor({ numStars = 1000 } = {}) {
    this.numStars = numStars;

    this.group = new Group();
    this.loader = new TextureLoader();

    this.createStarfield();

    this.animate = this.createAnimateFunction();
    this.animate();
  }

  createStarfield() {
    let col;
    const verts = [];
    const colors = [];
    const positions = [];

    for (let i = 0; i < this.numStars; i += 1) {
      let p = this.getRandomSpherePoint();
      const { pos, hue } = p;
      positions.push(p);
      col = new Color().setHSL(hue, 0.2, Math.random());
      verts.push(pos.x, pos.y, pos.z);
      colors.push(col.r, col.g, col.b);
    }

    const geo = new BufferGeometry();
    geo.setAttribute("position", new Float32BufferAttribute(verts, 3));
    geo.setAttribute("color", new Float32BufferAttribute(colors, 3));
    const mat = new PointsMaterial({
      size: 0.2,
      alphaTest: 0.5,
      transparent: true,
      vertexColors: true,
      blending: AdditiveBlending,
      map: this.loader.load("/solar-system-threejs/assets/circle.png"),
    });
    const points = new Points(geo, mat);
    this.group.add(points);
  }

  getRandomSpherePoint() {
    const radius = Math.random() * 25 + 25;
    const u = Math.random();
    const v = Math.random();
    const theta = 2 * Math.PI * u;
    const phi = Math.acos(2 * v - 1);
    let x = radius * Math.sin(phi) * Math.cos(theta);
    let y = radius * Math.sin(phi) * Math.sin(theta);
    let z = radius * Math.cos(phi);

    return {
      pos: new Vector3(x, y, z),
      hue: 0.6,
      minDist: radius,
    };
  }

  createAnimateFunction() {
    return () => {
      requestAnimationFrame(this.animate);
      this.group.rotation.y += 0.00005;
    };
  }

  getStarfield() {
    return this.group;
  }
}
登录后复制

添加星空很简单,只需使用场景类中的 add 方法即可

const starfield = new Starfield().getStarfield();
scene.add(starfield);
登录后复制

至于纹理,您可以在存储库中找到此项目中使用的所有纹理,该存储库链接在文章末尾。大多数纹理均取自此站点,但恒星和行星环纹理除外。


创造太阳

对于太阳,我使用了二十面体几何体并在其上映射了纹理。使用改进的噪声,我实现了太阳脉冲的效果,模拟真实恒星向太空发射能量流的方式。太阳不仅仅是一个带有映射纹理的图形;它也是一个图形。它还需要成为场景中的光源,所以我使用 PointLight 来模拟它。

import {
  Mesh,
  Group,
  Color,
  Vector3,
  BackSide,
  PointLight,
  TextureLoader,
  ShaderMaterial,
  AdditiveBlending,
  DynamicDrawUsage,
  MeshBasicMaterial,
  IcosahedronGeometry,
} from "three";
import { ImprovedNoise } from "three/addons/math/ImprovedNoise.js";

export class Sun {
  group;
  loader;
  animate;
  corona;
  sunRim;
  glow;

  constructor() {
    this.sunTexture = "/solar-system-threejs/assets/sun-map.jpg";

    this.group = new Group();
    this.loader = new TextureLoader();

    this.createCorona();
    this.createRim();
    this.addLighting();
    this.createGlow();
    this.createSun();

    this.animate = this.createAnimateFunction();
    this.animate();
  }

  createSun() {
    const map = this.loader.load(this.sunTexture);
    const sunGeometry = new IcosahedronGeometry(5, 12);
    const sunMaterial = new MeshBasicMaterial({
      map,
      emissive: new Color(0xffff99),
      emissiveIntensity: 1.5,
    });
    const sunMesh = new Mesh(sunGeometry, sunMaterial);
    this.group.add(sunMesh);

    this.group.add(this.sunRim);

    this.group.add(this.corona);

    this.group.add(this.glow);

    this.group.userData.update = (t) => {
      this.group.rotation.y = -t / 5;
      this.corona.userData.update(t);
    };
  }

  createCorona() {
    const coronaGeometry = new IcosahedronGeometry(4.9, 12);
    const coronaMaterial = new MeshBasicMaterial({
      color: 0xff0000,
      side: BackSide,
    });
    const coronaMesh = new Mesh(coronaGeometry, coronaMaterial);
    const coronaNoise = new ImprovedNoise();

    let v3 = new Vector3();
    let p = new Vector3();
    let pos = coronaGeometry.attributes.position;
    pos.usage = DynamicDrawUsage;
    const len = pos.count;

    const update = (t) => {
      for (let i = 0; i < len; i += 1) {
        p.fromBufferAttribute(pos, i).normalize();
        v3.copy(p).multiplyScalar(5);
        let ns = coronaNoise.noise(
          v3.x + Math.cos(t),
          v3.y + Math.sin(t),
          v3.z + t
        );
        v3.copy(p)
          .setLength(5)
          .addScaledVector(p, ns * 0.4);
        pos.setXYZ(i, v3.x, v3.y, v3.z);
      }
      pos.needsUpdate = true;
    };

    coronaMesh.userData.update = update;
    this.corona = coronaMesh;
  }

  createGlow() {
    const uniforms = {
      color1: { value: new Color(0x000000) },
      color2: { value: new Color(0xff0000) },
      fresnelBias: { value: 0.2 },
      fresnelScale: { value: 1.5 },
      fresnelPower: { value: 4.0 },
    };

    const vertexShader = `
    uniform float fresnelBias;
    uniform float fresnelScale;
    uniform float fresnelPower;

    varying float vReflectionFactor;

    void main() {
      vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );
      vec4 worldPosition = modelMatrix * vec4( position, 1.0 );

      vec3 worldNormal = normalize( mat3( modelMatrix[0].xyz, modelMatrix[1].xyz, modelMatrix[2].xyz ) * normal );

      vec3 I = worldPosition.xyz - cameraPosition;

      vReflectionFactor = fresnelBias + fresnelScale * pow( 1.0 + dot( normalize( I ), worldNormal ), fresnelPower );

      gl_Position = projectionMatrix * mvPosition;
    }
    `;

    const fragmentShader = `
      uniform vec3 color1;
      uniform vec3 color2;

      varying float vReflectionFactor;

      void main() {
        float f = clamp( vReflectionFactor, 0.0, 1.0 );
        gl_FragColor = vec4(mix(color2, color1, vec3(f)), f);
      }
    `;

    const sunGlowMaterial = new ShaderMaterial({
      uniforms,
      vertexShader,
      fragmentShader,
      transparent: true,
      blending: AdditiveBlending,
    });
    const sunGlowGeometry = new IcosahedronGeometry(5, 12);
    const sunGlowMesh = new Mesh(sunGlowGeometry, sunGlowMaterial);
    sunGlowMesh.scale.setScalar(1.1);
    this.glow = sunGlowMesh;
  }

  createRim() {
    const uniforms = {
      color1: { value: new Color(0xffff99) },
      color2: { value: new Color(0x000000) },
      fresnelBias: { value: 0.2 },
      fresnelScale: { value: 1.5 },
      fresnelPower: { value: 4.0 },
    };

    const vertexShader = `
    uniform float fresnelBias;
    uniform float fresnelScale;
    uniform float fresnelPower;

    varying float vReflectionFactor;

    void main() {
      vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );
      vec4 worldPosition = modelMatrix * vec4( position, 1.0 );

      vec3 worldNormal = normalize( mat3( modelMatrix[0].xyz, modelMatrix[1].xyz, modelMatrix[2].xyz ) * normal );

      vec3 I = worldPosition.xyz - cameraPosition;

      vReflectionFactor = fresnelBias + fresnelScale * pow( 1.0 + dot( normalize( I ), worldNormal ), fresnelPower );

      gl_Position = projectionMatrix * mvPosition;
    }
    `;
    const fragmentShader = `
    uniform vec3 color1;
    uniform vec3 color2;

    varying float vReflectionFactor;

    void main() {
      float f = clamp( vReflectionFactor, 0.0, 1.0 );
      gl_FragColor = vec4(mix(color2, color1, vec3(f)), f);
    }
    `;

    const sunRimMaterial = new ShaderMaterial({
      uniforms,
      vertexShader,
      fragmentShader,
      transparent: true,
      blending: AdditiveBlending,
    });
    const sunRimGeometry = new IcosahedronGeometry(5, 12);
    const sunRimMesh = new Mesh(sunRimGeometry, sunRimMaterial);
    sunRimMesh.scale.setScalar(1.01);
    this.sunRim = sunRimMesh;
  }

  addLighting() {
    const sunLight = new PointLight(0xffff99, 1000);
    sunLight.position.set(0, 0, 0);
    this.group.add(sunLight);
  }

  createAnimateFunction() {
    return (t = 0) => {
      const time = t * 0.00051;
      requestAnimationFrame(this.animate);
      this.group.userData.update(time);
    };
  }

  getSun() {
    return this.group;
  }
}
登录后复制

创造行星

所有行星都是使用类似的逻辑构建的:每个行星都需要一个轨道、纹理、轨道速度和自转速度。对于需要它们的行星,还应该添加环。

import {
  Mesh,
  Color,
  Group,
  DoubleSide,
  RingGeometry,
  TorusGeometry,
  TextureLoader,
  ShaderMaterial,
  SRGBColorSpace,
  AdditiveBlending,
  MeshPhongMaterial,
  MeshBasicMaterial,
  IcosahedronGeometry,
} from "three";

export class Planet {
  group;
  loader;
  animate;
  planetGroup;
  planetGeometry;

  constructor({
    orbitSpeed = 1,
    orbitRadius = 1,
    orbitRotationDirection = "clockwise",

    planetSize = 1,
    planetAngle = 0,
    planetRotationSpeed = 1,
    planetRotationDirection = "clockwise",
    planetTexture = "/solar-system-threejs/assets/mercury-map.jpg",

    rimHex = 0x0088ff,
    facingHex = 0x000000,

    rings = null,
  } = {}) {
    this.orbitSpeed = orbitSpeed;
    this.orbitRadius = orbitRadius;
    this.orbitRotationDirection = orbitRotationDirection;

    this.planetSize = planetSize;
    this.planetAngle = planetAngle;
    this.planetTexture = planetTexture;
    this.planetRotationSpeed = planetRotationSpeed;
    this.planetRotationDirection = planetRotationDirection;

    this.rings = rings;

    this.group = new Group();
    this.planetGroup = new Group();
    this.loader = new TextureLoader();
    this.planetGeometry = new IcosahedronGeometry(this.planetSize, 12);

    this.createOrbit();
    this.createRings();
    this.createPlanet();
    this.createGlow(rimHex, facingHex);

    this.animate = this.createAnimateFunction();
    this.animate();
  }

  createOrbit() {
    const orbitGeometry = new TorusGeometry(this.orbitRadius, 0.01, 100);
    const orbitMaterial = new MeshBasicMaterial({
      color: 0xadd8e6,
      side: DoubleSide,
    });
    const orbitMesh = new Mesh(orbitGeometry, orbitMaterial);
    orbitMesh.rotation.x = Math.PI / 2;
    this.group.add(orbitMesh);
  }

  createPlanet() {
    const map = this.loader.load(this.planetTexture);
    const planetMaterial = new MeshPhongMaterial({ map });
    planetMaterial.map.colorSpace = SRGBColorSpace;
    const planetMesh = new Mesh(this.planetGeometry, planetMaterial);
    this.planetGroup.add(planetMesh);
    this.planetGroup.position.x = this.orbitRadius - this.planetSize / 9;
    this.planetGroup.rotation.z = this.planetAngle;
    this.group.add(this.planetGroup);
  }

  createGlow(rimHex, facingHex) {
    const uniforms = {
      color1: { value: new Color(rimHex) },
      color2: { value: new Color(facingHex) },
      fresnelBias: { value: 0.2 },
      fresnelScale: { value: 1.5 },
      fresnelPower: { value: 4.0 },
    };

    const vertexShader = `
    uniform float fresnelBias;
    uniform float fresnelScale;
    uniform float fresnelPower;

    varying float vReflectionFactor;

    void main() {
      vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );
      vec4 worldPosition = modelMatrix * vec4( position, 1.0 );

      vec3 worldNormal = normalize( mat3( modelMatrix[0].xyz, modelMatrix[1].xyz, modelMatrix[2].xyz ) * normal );

      vec3 I = worldPosition.xyz - cameraPosition;

      vReflectionFactor = fresnelBias + fresnelScale * pow( 1.0 + dot( normalize( I ), worldNormal ), fresnelPower );

      gl_Position = projectionMatrix * mvPosition;
    }
    `;

    const fragmentShader = `
      uniform vec3 color1;
      uniform vec3 color2;

      varying float vReflectionFactor;

      void main() {
        float f = clamp( vReflectionFactor, 0.0, 1.0 );
        gl_FragColor = vec4(mix(color2, color1, vec3(f)), f);
      }
    `;

    const planetGlowMaterial = new ShaderMaterial({
      uniforms,
      vertexShader,
      fragmentShader,
      transparent: true,
      blending: AdditiveBlending,
    });
    const planetGlowMesh = new Mesh(this.planetGeometry, planetGlowMaterial);
    planetGlowMesh.scale.setScalar(1.1);
    this.planetGroup.add(planetGlowMesh);
  }

  createRings() {
    if (!this.rings) return;

    const innerRadius = this.planetSize + 0.1;
    const outerRadius = innerRadius + this.rings.ringsSize;

    const ringsGeometry = new RingGeometry(innerRadius, outerRadius, 32);

    const ringsMaterial = new MeshBasicMaterial({
      side: DoubleSide,
      transparent: true,
      map: this.loader.load(this.rings.ringsTexture),
    });

    const ringMeshs = new Mesh(ringsGeometry, ringsMaterial);
    ringMeshs.rotation.x = Math.PI / 2;
    this.planetGroup.add(ringMeshs);
  }

  createAnimateFunction() {
    return () => {
      requestAnimationFrame(this.animate);

      this.updateOrbitRotation();
      this.updatePlanetRotation();
    };
  }

  updateOrbitRotation() {
    if (this.orbitRotationDirection === "clockwise") {
      this.group.rotation.y -= this.orbitSpeed;
    } else if (this.orbitRotationDirection === "counterclockwise") {
      this.group.rotation.y += this.orbitSpeed;
    }
  }

  updatePlanetRotation() {
    if (this.planetRotationDirection === "clockwise") {
      this.planetGroup.rotation.y -= this.planetRotationSpeed;
    } else if (this.planetRotationDirection === "counterclockwise") {
      this.planetGroup.rotation.y += this.planetRotationSpeed;
    }
  }

  getPlanet() {
    return this.group;
  }
}
登录后复制

对于地球,我扩展了 Planet 类以添加额外的纹理,例如云和行星夜面的夜间纹理。

import {
  Mesh,
  AdditiveBlending,
  MeshBasicMaterial,
  MeshStandardMaterial,
} from "three";
import { Planet } from "./planet";

export class Earth extends Planet {
  constructor(props) {
    super(props);

    this.createPlanetLights();
    this.createPlanetClouds();
  }

  createPlanetLights() {
    const planetLightsMaterial = new MeshBasicMaterial({
      map: this.loader.load("/solar-system-threejs/assets/earth-map-2.jpg"),
      blending: AdditiveBlending,
    });
    const planetLightsMesh = new Mesh(
      this.planetGeometry,
      planetLightsMaterial
    );
    this.planetGroup.add(planetLightsMesh);

    this.group.add(this.planetGroup);
  }

  createPlanetClouds() {
    const planetCloudsMaterial = new MeshStandardMaterial({
      map: this.loader.load("/solar-system-threejs/assets/earth-map-3.jpg"),
      transparent: true,
      opacity: 0.8,
      blending: AdditiveBlending,
      alphaMap: this.loader.load(
        "/solar-system-threejs/assets/earth-map-4.jpg"
      ),
    });
    const planetCloudsMesh = new Mesh(
      this.planetGeometry,
      planetCloudsMaterial
    );
    planetCloudsMesh.scale.setScalar(1.003);
    this.planetGroup.add(planetCloudsMesh);

    this.group.add(this.planetGroup);
  }
}
登录后复制

通过在 Google 上搜索大约五分钟,您将看到一个表格,其中包含将行星添加到场景中所需的所有值。

Planet Size (diameter) Rotation speed Rotation direction Orbit speed
Mercury 4,880 km 10.83 km/h Counterclockwise 47.87 km/s
Venus 12,104 km 6.52 km/h Clockwise 35.02 km/s
Earth 12,742 km 1674.4 km/h Counterclockwise 29.78 km/s
Mars 6,779 km 866.5 km/h Counterclockwise 24.07 km/s
Jupiter 142,984 km 45,300 km/h Counterclockwise 13.07 km/s
Saturn 120,536 km 35,500 km/h Counterclockwise 9.69 km/s
Uranus 51,118 km 9,320 km/h Clockwise 6.81 km/s
Neptune 49,528 km 9,720 km/h Counterclockwise 5.43 km/s

Now, all the planets and the sun can be added to the scene.

const planets = [
  {
    orbitSpeed: 0.00048,
    orbitRadius: 10,
    orbitRotationDirection: "clockwise",
    planetSize: 0.2,
    planetRotationSpeed: 0.005,
    planetRotationDirection: "counterclockwise",
    planetTexture: "/solar-system-threejs/assets/mercury-map.jpg",
    rimHex: 0xf9cf9f,
  },
  {
    orbitSpeed: 0.00035,
    orbitRadius: 13,
    orbitRotationDirection: "clockwise",
    planetSize: 0.5,
    planetRotationSpeed: 0.0005,
    planetRotationDirection: "clockwise",
    planetTexture: "/solar-system-threejs/assets/venus-map.jpg",
    rimHex: 0xb66f1f,
  },
  {
    orbitSpeed: 0.00024,
    orbitRadius: 19,
    orbitRotationDirection: "clockwise",
    planetSize: 0.3,
    planetRotationSpeed: 0.01,
    planetRotationDirection: "counterclockwise",
    planetTexture: "/solar-system-threejs/assets/mars-map.jpg",
    rimHex: 0xbc6434,
  },
  {
    orbitSpeed: 0.00013,
    orbitRadius: 22,
    orbitRotationDirection: "clockwise",
    planetSize: 1,
    planetRotationSpeed: 0.06,
    planetRotationDirection: "counterclockwise",
    planetTexture: "/solar-system-threejs/assets/jupiter-map.jpg",
    rimHex: 0xf3d6b6,
  },
  {
    orbitSpeed: 0.0001,
    orbitRadius: 25,
    orbitRotationDirection: "clockwise",
    planetSize: 0.8,
    planetRotationSpeed: 0.05,
    planetRotationDirection: "counterclockwise",
    planetTexture: "/solar-system-threejs/assets/saturn-map.jpg",
    rimHex: 0xd6b892,
    rings: {
      ringsSize: 0.5,
      ringsTexture: "/solar-system-threejs/assets/saturn-rings.jpg",
    },
  },
  {
    orbitSpeed: 0.00007,
    orbitRadius: 28,
    orbitRotationDirection: "clockwise",
    planetSize: 0.5,
    planetRotationSpeed: 0.02,
    planetRotationDirection: "clockwise",
    planetTexture: "/solar-system-threejs/assets/uranus-map.jpg",
    rimHex: 0x9ab6c2,
    rings: {
      ringsSize: 0.4,
      ringsTexture: "/solar-system-threejs/assets/uranus-rings.jpg",
    },
  },
  {
    orbitSpeed: 0.000054,
    orbitRadius: 31,
    orbitRotationDirection: "clockwise",
    planetSize: 0.5,
    planetRotationSpeed: 0.02,
    planetRotationDirection: "counterclockwise",
    planetTexture: "/solar-system-threejs/assets/neptune-map.jpg",
    rimHex: 0x5c7ed7,
  },
];

planets.forEach((item) => {
  const planet = new Planet(item).getPlanet();
  scene.add(planet);
});

const earth = new Earth({
  orbitSpeed: 0.00029,
  orbitRadius: 16,
  orbitRotationDirection: "clockwise",
  planetSize: 0.5,
  planetAngle: (-23.4 * Math.PI) / 180,
  planetRotationSpeed: 0.01,
  planetRotationDirection: "counterclockwise",
  planetTexture: "/solar-system-threejs/assets/earth-map-1.jpg",
}).getPlanet();

scene.add(earth);

登录后复制

In result all solar system will look sth like:

Solar system with Three.js

Deploying to GitHub Pages

For deploying to set the correct base in vite.config.js.

If you are deploying to https://.github.io/, or to a custom domain through GitHub Pages, set base to '/'. Alternatively, you can remove base from the configuration, as it defaults to '/'.

If you are deploying to https://.github.io// (eg. your repository is at https://github.com//), then set base to '//'.

Go to your GitHub Pages configuration in the repository settings page and choose the source of deployment as "GitHub Actions", this will lead you to create a workflow that builds and deploys your project, a sample workflow that installs dependencies and builds using npm is provided:

# Simple workflow for deploying static content to GitHub Pages
name: Deploy static content to Pages

on:
  # Runs on pushes targeting the default branch
  push:
    branches: ['main']

  # Allows you to run this workflow manually from the Actions tab
  workflow_dispatch:

# Sets the GITHUB_TOKEN permissions to allow deployment to GitHub Pages
permissions:
  contents: read
  pages: write
  id-token: write

# Allow one concurrent deployment
concurrency:
  group: 'pages'
  cancel-in-progress: true

jobs:
  # Single deploy job since we're just deploying
  deploy:
    environment:
      name: github-pages
      url: ${{ steps.deployment.outputs.page_url }}
    runs-on: ubuntu-latest
    steps:
      - name: Checkout
        uses: actions/checkout@v4
      - name: Set up Node
        uses: actions/setup-node@v4
        with:
          node-version: 20
          cache: 'npm'
      - name: Install dependencies
        run: npm ci
      - name: Build
        run: npm run build
      - name: Setup Pages
        uses: actions/configure-pages@v4
      - name: Upload artifact
        uses: actions/upload-pages-artifact@v3
        with:
          # Upload dist folder
          path: './dist'
      - name: Deploy to GitHub Pages
        id: deployment
        uses: actions/deploy-pages@v4
登录后复制

That is it. If your deployment has not started automatically you can always start it manually in Actions tab in your repo. Link with deployed project can be found below.


Conclusion

That’s it for today! You can find the link to the entire project below. I hope you found this entertaining and don’t still believe the Earth is flat.
See ya!

Repository link

Deployment link

以上是使用 Three.js 的太阳能系统的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1668
14
CakePHP 教程
1426
52
Laravel 教程
1329
25
PHP教程
1273
29
C# 教程
1256
24
JavaScript引擎:比较实施 JavaScript引擎:比较实施 Apr 13, 2025 am 12:05 AM

不同JavaScript引擎在解析和执行JavaScript代码时,效果会有所不同,因为每个引擎的实现原理和优化策略各有差异。1.词法分析:将源码转换为词法单元。2.语法分析:生成抽象语法树。3.优化和编译:通过JIT编译器生成机器码。4.执行:运行机器码。V8引擎通过即时编译和隐藏类优化,SpiderMonkey使用类型推断系统,导致在相同代码上的性能表现不同。

Python vs. JavaScript:学习曲线和易用性 Python vs. JavaScript:学习曲线和易用性 Apr 16, 2025 am 12:12 AM

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

从C/C到JavaScript:所有工作方式 从C/C到JavaScript:所有工作方式 Apr 14, 2025 am 12:05 AM

从C/C 转向JavaScript需要适应动态类型、垃圾回收和异步编程等特点。1)C/C 是静态类型语言,需手动管理内存,而JavaScript是动态类型,垃圾回收自动处理。2)C/C 需编译成机器码,JavaScript则为解释型语言。3)JavaScript引入闭包、原型链和Promise等概念,增强了灵活性和异步编程能力。

JavaScript和Web:核心功能和用例 JavaScript和Web:核心功能和用例 Apr 18, 2025 am 12:19 AM

JavaScript在Web开发中的主要用途包括客户端交互、表单验证和异步通信。1)通过DOM操作实现动态内容更新和用户交互;2)在用户提交数据前进行客户端验证,提高用户体验;3)通过AJAX技术实现与服务器的无刷新通信。

JavaScript在行动中:现实世界中的示例和项目 JavaScript在行动中:现实世界中的示例和项目 Apr 19, 2025 am 12:13 AM

JavaScript在现实世界中的应用包括前端和后端开发。1)通过构建TODO列表应用展示前端应用,涉及DOM操作和事件处理。2)通过Node.js和Express构建RESTfulAPI展示后端应用。

了解JavaScript引擎:实施详细信息 了解JavaScript引擎:实施详细信息 Apr 17, 2025 am 12:05 AM

理解JavaScript引擎内部工作原理对开发者重要,因为它能帮助编写更高效的代码并理解性能瓶颈和优化策略。1)引擎的工作流程包括解析、编译和执行三个阶段;2)执行过程中,引擎会进行动态优化,如内联缓存和隐藏类;3)最佳实践包括避免全局变量、优化循环、使用const和let,以及避免过度使用闭包。

Python vs. JavaScript:社区,图书馆和资源 Python vs. JavaScript:社区,图书馆和资源 Apr 15, 2025 am 12:16 AM

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

Python vs. JavaScript:开发环境和工具 Python vs. JavaScript:开发环境和工具 Apr 26, 2025 am 12:09 AM

Python和JavaScript在开发环境上的选择都很重要。1)Python的开发环境包括PyCharm、JupyterNotebook和Anaconda,适合数据科学和快速原型开发。2)JavaScript的开发环境包括Node.js、VSCode和Webpack,适用于前端和后端开发。根据项目需求选择合适的工具可以提高开发效率和项目成功率。

See all articles