加快 `shutil.copytree` 速度!
关于加速shutil.copytree的讨论
写在这里
这是关于 的讨论,请参阅:https://discuss.python.org/t/speed-up-shutil-copytree/62078。如果您有任何想法,请发送给我!
背景
shutil 是 Python 中一个非常有用的模块。你可以在github中找到它:https://github.com/python/cpython/blob/master/Lib/shutil.py
shutil.copytree 是将一个文件夹复制到另一个文件夹的函数。
在该函数中,调用_copytree函数进行复制。
_copytree 有什么作用?
- 忽略指定的文件/目录。
- 创建目标目录。
- 在处理符号链接时复制文件或目录。
- 收集并最终提出遇到的错误(例如权限问题)。
- 将源目录的元数据复制到目标目录。
问题
_当文件数量较多或文件大小较大时,copytree速度不是很快。
在这里测试:
import os import shutil os.mkdir('test') os.mkdir('test/source') def bench_mark(func, *args): import time start = time.time() func(*args) end = time.time() print(f'{func.__name__} takes {end - start} seconds') return end - start # write in 3000 files def write_in_5000_files(): for i in range(5000): with open(f'test/source/{i}.txt', 'w') as f: f.write('Hello World' + os.urandom(24).hex()) f.close() bench_mark(write_in_5000_files) def copy(): shutil.copytree('test/source', 'test/destination') bench_mark(copy)
结果是:
write_in_5000_files 需要 4.084963083267212 秒
复制需要 27.12768316268921 秒
我做了什么
多线程
我使用多线程来加速复制过程。我将函数重命名为_copytree_single_threaded,添加一个新函数_copytree_multithreaded。这是copytree_multithreaded:
def _copytree_multithreaded(src, dst, symlinks=False, ignore=None, copy_function=shutil.copy2, ignore_dangling_symlinks=False, dirs_exist_ok=False, max_workers=4): """Recursively copy a directory tree using multiple threads.""" sys.audit("shutil.copytree", src, dst) # get the entries to copy entries = list(os.scandir(src)) # make the pool with ThreadPoolExecutor(max_workers=max_workers) as executor: # submit the tasks futures = [ executor.submit(_copytree_single_threaded, entries=[entry], src=src, dst=dst, symlinks=symlinks, ignore=ignore, copy_function=copy_function, ignore_dangling_symlinks=ignore_dangling_symlinks, dirs_exist_ok=dirs_exist_ok) for entry in entries ] # wait for the tasks for future in as_completed(futures): try: future.result() except Exception as e: print(f"Failed to copy: {e}") raise
我添加了一个判断,选择是否使用多线程。
if len(entries) >= 100 or sum(os.path.getsize(entry.path) for entry in entries) >= 100*1024*1024: # multithreaded version return _copytree_multithreaded(src, dst, symlinks=symlinks, ignore=ignore, copy_function=copy_function, ignore_dangling_symlinks=ignore_dangling_symlinks, dirs_exist_ok=dirs_exist_ok) else: # single threaded version return _copytree_single_threaded(entries=entries, src=src, dst=dst, symlinks=symlinks, ignore=ignore, copy_function=copy_function, ignore_dangling_symlinks=ignore_dangling_symlinks, dirs_exist_ok=dirs_exist_ok)
测试
我在源文件夹中写入了 50000 个文件。基准标记:
def bench_mark(func, *args): import time start = time.perf_counter() func(*args) end = time.perf_counter() print(f"{func.__name__} costs {end - start}s")
写入:
import os os.mkdir("Test") os.mkdir("Test/source") # write in 50000 files def write_in_file(): for i in range(50000): with open(f"Test/source/{i}.txt", 'w') as f: f.write(f"{i}") f.close()
两个比较:
def copy1(): import shutil shutil.copytree('test/source', 'test/destination1') def copy2(): import my_shutil my_shutil.copytree('test/source', 'test/destination2')
- “my_shutil”是我修改过的shutil版本。
副本 1 花费 173.04780609999943s
copy2 花费 155.81321870000102s
copy2 比 copy1 快很多。你可以跑很多次。
优点和缺点
使用多线程可以加快复制过程。但会增加内存占用。但我们不需要在代码中重写多线程。
异步
感谢“巴里·斯科特”。我会听从他/她的建议:
通过使用异步 I/O,您可能会以更少的开销获得相同的改进。
我写了这些代码:
import os import shutil import asyncio from concurrent.futures import ThreadPoolExecutor import time # create directory def create_target_directory(dst): os.makedirs(dst, exist_ok=True) # copy 1 file async def copy_file_async(src, dst): loop = asyncio.get_event_loop() await loop.run_in_executor(None, shutil.copy2, src, dst) # copy directory async def copy_directory_async(src, dst, symlinks=False, ignore=None, dirs_exist_ok=False): entries = os.scandir(src) create_target_directory(dst) tasks = [] for entry in entries: src_path = entry.path dst_path = os.path.join(dst, entry.name) if entry.is_dir(follow_symlinks=not symlinks): tasks.append(copy_directory_async(src_path, dst_path, symlinks, ignore, dirs_exist_ok)) else: tasks.append(copy_file_async(src_path, dst_path)) await asyncio.gather(*tasks) # choose copy method def choose_copy_method(entries, src, dst, **kwargs): if len(entries) >= 100 or sum(os.path.getsize(entry.path) for entry in entries) >= 100 * 1024 * 1024: # async version asyncio.run(copy_directory_async(src, dst, **kwargs)) else: # single thread version shutil.copytree(src, dst, **kwargs) # test function def bench_mark(func, *args): start = time.perf_counter() func(*args) end = time.perf_counter() print(f"{func.__name__} costs {end - start:.2f}s") # write in 50000 files def write_in_50000_files(): for i in range(50000): with open(f"Test/source/{i}.txt", 'w') as f: f.write(f"{i}") def main(): os.makedirs('Test/source', exist_ok=True) write_in_50000_files() # 单线程复制 def copy1(): shutil.copytree('Test/source', 'Test/destination1') def copy2(): shutil.copytree('Test/source', 'Test/destination2') # async def copy3(): entries = list(os.scandir('Test/source')) choose_copy_method(entries, 'Test/source', 'Test/destination3') bench_mark(copy1) bench_mark(copy2) bench_mark(copy3) shutil.rmtree('Test') if __name__ == "__main__": main()
输出:
副本 1 花费 187.21 秒
copy2 花费 244.33s
copy3 花费 111.27 秒
可以看到异步版本比单线程版本更快。但单线程版本比多线程版本更快。 (可能是我的测试环境不太好,你可以尝试一下,把你的结果回复给我)
谢谢巴里·斯科特!
优点和缺点
异步是一个不错的选择。但没有一个解决方案是完美的。如果您发现任何问题,可以回复我。
结尾
这是我第一次在 python.org 上写讨论。如果有任何问题,请告诉我。谢谢。
我的Github:https://github.com/mengqinyuan
我的开发者:https://dev.to/mengqinyuan
以上是加快 `shutil.copytree` 速度!的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优
