首页 > 后端开发 > Python教程 > 加快 `shutil.copytree` 速度!

加快 `shutil.copytree` 速度!

WBOY
发布: 2024-08-28 18:32:06
原创
537 人浏览过

Speed up `shutil.copytree` !

关于加速shutil.copytree的讨论

写在这里

这是关于 的讨论,请参阅:https://discuss.python.org/t/speed-up-shutil-copytree/62078。如果您有任何想法,请发送给我!

背景

shutil 是 Python 中一个非常有用的模块。你可以在github中找到它:https://github.com/python/cpython/blob/master/Lib/shutil.py

shutil.copytree 是将一个文件夹复制到另一个文件夹的函数。

在该函数中,调用_copytree函数进行复制。

_copytree 有什么作用?

  1. 忽略指定的文件/目录。
  2. 创建目标目录。
  3. 在处理符号链接时复制文件或目录。
  4. 收集并最终提出遇到的错误(例如权限问题)。
  5. 将源目录的元数据复制到目标目录。

问题

_当文件数量较多或文件大小较大时,copytree速度不是很快。

在这里测试:

import os
import shutil

os.mkdir('test')
os.mkdir('test/source')

def bench_mark(func, *args):
    import time
    start = time.time()
    func(*args)
    end = time.time()
    print(f'{func.__name__} takes {end - start} seconds')
    return end - start

# write in 3000 files
def write_in_5000_files():
    for i in range(5000):
        with open(f'test/source/{i}.txt', 'w') as f:
            f.write('Hello World' + os.urandom(24).hex())
            f.close()

bench_mark(write_in_5000_files)

def copy():
    shutil.copytree('test/source', 'test/destination')

bench_mark(copy)
登录后复制

结果是:

write_in_5000_files 需要 4.084963083267212 秒
复制需要 27.12768316268921 秒

我做了什么

多线程

我使用多线程来加速复制过程。我将函数重命名为_copytree_single_threaded,添加一个新函数_copytree_multithreaded。这是copytree_multithreaded:

def _copytree_multithreaded(src, dst, symlinks=False, ignore=None, copy_function=shutil.copy2,
                            ignore_dangling_symlinks=False, dirs_exist_ok=False, max_workers=4):
    """Recursively copy a directory tree using multiple threads."""
    sys.audit("shutil.copytree", src, dst)

    # get the entries to copy
    entries = list(os.scandir(src))

    # make the pool
    with ThreadPoolExecutor(max_workers=max_workers) as executor:
        # submit the tasks
        futures = [
            executor.submit(_copytree_single_threaded, entries=[entry], src=src, dst=dst,
                            symlinks=symlinks, ignore=ignore, copy_function=copy_function,
                            ignore_dangling_symlinks=ignore_dangling_symlinks,
                            dirs_exist_ok=dirs_exist_ok)
            for entry in entries
        ]

        # wait for the tasks
        for future in as_completed(futures):
            try:
                future.result()
            except Exception as e:
                print(f"Failed to copy: {e}")
                raise

登录后复制

我添加了一个判断,选择是否使用多线程。

if len(entries) >= 100 or sum(os.path.getsize(entry.path) for entry in entries) >= 100*1024*1024:
        # multithreaded version
        return _copytree_multithreaded(src, dst, symlinks=symlinks, ignore=ignore,
                                        copy_function=copy_function,
                                        ignore_dangling_symlinks=ignore_dangling_symlinks,
                                        dirs_exist_ok=dirs_exist_ok)

else:
    # single threaded version
    return _copytree_single_threaded(entries=entries, src=src, dst=dst,
                                        symlinks=symlinks, ignore=ignore,
                                        copy_function=copy_function,
                                        ignore_dangling_symlinks=ignore_dangling_symlinks,
                                        dirs_exist_ok=dirs_exist_ok)
登录后复制

测试

我在源文件夹中写入了 50000 个文件。基准标记:

def bench_mark(func, *args):
    import time
    start = time.perf_counter()
    func(*args)
    end = time.perf_counter()
    print(f"{func.__name__} costs {end - start}s")

登录后复制

写入:

import os
os.mkdir("Test")
os.mkdir("Test/source")

# write in 50000 files
def write_in_file():
    for i in range(50000):
         with open(f"Test/source/{i}.txt", 'w') as f:
             f.write(f"{i}")
             f.close()

登录后复制

两个比较:

def copy1():
    import shutil
    shutil.copytree('test/source', 'test/destination1')

def copy2():
    import my_shutil
    my_shutil.copytree('test/source', 'test/destination2')

登录后复制
  • “my_shutil”是我修改过的shutil版本。

副本 1 花费 173.04780609999943s
copy2 花费 155.81321870000102s

copy2 比 copy1 快很多。你可以跑很多次。

优点和缺点

使用多线程可以加快复制过程。但会增加内存占用。但我们不需要在代码中重写多线程。

异步

感谢“巴里·斯科特”。我会听从他/她的建议:

通过使用异步 I/O,您可能会以更少的开销获得相同的改进。

我写了这些代码:

import os
import shutil
import asyncio
from concurrent.futures import ThreadPoolExecutor
import time


# create directory
def create_target_directory(dst):
    os.makedirs(dst, exist_ok=True)

# copy 1 file
async def copy_file_async(src, dst):
    loop = asyncio.get_event_loop()
    await loop.run_in_executor(None, shutil.copy2, src, dst)

# copy directory
async def copy_directory_async(src, dst, symlinks=False, ignore=None, dirs_exist_ok=False):
    entries = os.scandir(src)
    create_target_directory(dst)

    tasks = []
    for entry in entries:
        src_path = entry.path
        dst_path = os.path.join(dst, entry.name)

        if entry.is_dir(follow_symlinks=not symlinks):
            tasks.append(copy_directory_async(src_path, dst_path, symlinks, ignore, dirs_exist_ok))
        else:
            tasks.append(copy_file_async(src_path, dst_path))

    await asyncio.gather(*tasks)
# choose copy method
def choose_copy_method(entries, src, dst, **kwargs):
    if len(entries) >= 100 or sum(os.path.getsize(entry.path) for entry in entries) >= 100 * 1024 * 1024:
        # async version
        asyncio.run(copy_directory_async(src, dst, **kwargs))
    else:
        # single thread version
        shutil.copytree(src, dst, **kwargs)
# test function
def bench_mark(func, *args):
    start = time.perf_counter()
    func(*args)
    end = time.perf_counter()
    print(f"{func.__name__} costs {end - start:.2f}s")

# write in 50000 files
def write_in_50000_files():
    for i in range(50000):
        with open(f"Test/source/{i}.txt", 'w') as f:
            f.write(f"{i}")

def main():
    os.makedirs('Test/source', exist_ok=True)
    write_in_50000_files()

    # 单线程复制
    def copy1():
        shutil.copytree('Test/source', 'Test/destination1')

    def copy2():
        shutil.copytree('Test/source', 'Test/destination2')

    # async
    def copy3():
        entries = list(os.scandir('Test/source'))
        choose_copy_method(entries, 'Test/source', 'Test/destination3')

    bench_mark(copy1)
    bench_mark(copy2)
    bench_mark(copy3)

    shutil.rmtree('Test')

if __name__ == "__main__":
    main()
登录后复制

输出:

副本 1 花费 187.21 秒
copy2 花费 244.33s
copy3 花费 111.27 秒


可以看到异步版本比单线程版本更快。但单线程版本比多线程版本更快。 (可能是我的测试环境不太好,你可以尝试一下,把你的结果回复给我)

谢谢巴里·斯科特!

优点和缺点

异步是一个不错的选择。但没有一个解决方案是完美的。如果您发现任何问题,可以回复我。

结尾

这是我第一次在 python.org 上写讨论。如果有任何问题,请告诉我。谢谢。

我的Github:https://github.com/mengqinyuan
我的开发者:https://dev.to/mengqinyuan

以上是加快 `shutil.copytree` 速度!的详细内容。更多信息请关注PHP中文网其他相关文章!

来源:dev.to
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板