Pytest 和 PostgreSQL:每次测试的新数据库(第二部分)
在上一篇文章中,我们创建了 Pytest 夹具,它将在测试方法之前/之后创建/删除 Postgres 数据库。在这一部分中,我想在 Pytest 工厂固定装置的帮助下改进固定装置,使其更加灵活和可配置。
静态夹具的限制
例如,如果您有多个数据库要在测试中模拟
def test_create_user(test_db1, test_db2): ...
您必须创建几乎两个相同的灯具:
TEST_DB_URL = "postgresql://localhost" TEST_DB1_NAME = "test_foo" TEST_DB2_NAME = "test_bar" @pytest.fixture def test_db1(): with psycopg.connect(TEST_DB_URL, autocommit=True) as conn: cur = conn.cursor() cur.execute(f'DROP DATABASE IF EXISTS "{TEST_DB1_NAME}" WITH (FORCE)') cur.execute(f'CREATE DATABASE "{TEST_DB1_NAME}"') with psycopg.connect(TEST_DB_URL, dbname=TEST_DB1_NAME) as conn: yield conn cur.execute(f'DROP DATABASE IF EXISTS "{TEST_DB1_NAME}" WITH (FORCE)') @pytest.fixture def test_db2(): with psycopg.connect(TEST_DB_URL, autocommit=True) as conn: cur = conn.cursor() cur.execute(f'DROP DATABASE IF EXISTS "{TEST_DB2_NAME}" WITH (FORCE)') cur.execute(f'CREATE DATABASE "{TEST_DB2_NAME}"') with psycopg.connect(TEST_DB_URL, dbname=TEST_DB2_NAME) as conn: yield conn cur.execute(f'DROP DATABASE IF EXISTS "{TEST_DB2_NAME}" WITH (FORCE)')
Pytest 夹具工厂
“静态”装置在这里有点限制。当需要几乎相同且仅有细微差别时,您需要复制代码。希望 Pytest 有工厂作为固定装置的概念。
工厂固定装置是一个返回另一个固定装置的固定装置。因为,像每个工厂一样,它是一个函数,它可以接受参数来自定义返回的固定装置。按照惯例,您可以在它们前面加上 make_* 前缀,例如 make_test_db。
专用夹具
我们的装置工厂 make_test_db 的唯一参数将是要创建/删除的测试数据库名称。
那么,让我们基于 make_test_db 工厂装置创建两个“专用”装置。
用法如下:
@pytest.fixture def test_db_foo(make_test_db): yield from make_test_db("test_foo") @pytest.fixture def test_db_bar(make_test_db): yield from make_test_db("test_bar")
旁注:产量来自
你注意到产量了吗? Yield 和 Yield 之间的一个关键区别在于它们如何处理生成器内的数据流和控制。
在Python中,yield和yield from都在生成器函数中使用来生成一系列值,但是
- Yield 用于暂停生成器函数的执行并向调用者返回单个值。
- 而yield from用于将值的生成委托给另一个生成器。它本质上“展平”了嵌套生成器,将其生成的值直接传递给外部生成器的调用者。
也就是说,我们不想从专门的夹具“屈服”,而是从夹具工厂“屈服”。因此这里需要yield from。
用于创建/删除数据库的夹具工厂
除了将代码包装到内部函数之外,对我们原始夹具创建/删除数据库所需的更改实际上几乎不需要任何更改。
@pytest.fixture def make_test_db(): def _(test_db_name: str): with psycopg.connect(TEST_DB_URL, autocommit=True) as conn: cur = conn.cursor() cur.execute(f'DROP DATABASE IF EXISTS "{test_db_name}" WITH (FORCE)') # type: ignore cur.execute(f'CREATE DATABASE "{test_db_name}"') # type: ignore with psycopg.connect(TEST_DB_URL, dbname=test_db_name) as conn: yield conn cur.execute(f'DROP DATABASE IF EXISTS "{test_db_name}" WITH (FORCE)') # type: ignore yield _
奖励:将迁移固定装置重写为工厂固定装置
在上一部分中,我还有一个固定装置,将 Yoyo 迁移应用于刚刚创建的空数据库。它也不是很灵活。让我们做同样的事情并将实际代码包装到内部函数中。
在这种情况下,因为代码不需要在从测试方法返回后进行清理(其中没有yield),所以
- 工厂装置返回(不是yield)内部函数
- 专门的夹具调用(不是从工厂夹具中产生)
@pytest.fixture def make_yoyo(): """Applies Yoyo migrations to test DB.""" def _(test_db_name: str, migrations_dir: str): url = ( urlparse(TEST_DB_URL) . _replace(scheme="postgresql+psycopg") . _replace(path=test_db_name) .geturl() ) backend = get_backend(url) migrations = read_migrations(migrations_dir) if len(migrations) == 0: raise ValueError(f"No Yoyo migrations found in '{migrations_dir}'") with backend.lock(): backend.apply_migrations(backend.to_apply(migrations)) return _ @pytest.fixture def yoyo_foo(make_yoyo): migrations_dir = str(Path(__file__, "../../foo/migrations").resolve()) make_yoyo("test_foo", migrations_dir) @pytest.fixture def yoyo_bar(make_yoyo): migrations_dir = str(Path(__file__, "../../bar/migrations").resolve()) make_yoyo("test_bar", migrations_dir)
需要两个数据库并对它们应用迁移的测试方法:
from psycopg import Connection def test_get_new_users_since_last_run( test_db_foo: Connection, test_db_bar: Connection, yoyo_foo, yoyo_bar): test_db_foo.execute("...") ...
结论
构建自己的夹具工厂,为 Pytest 方法创建和删除数据库实际上是练习 Python 生成器和运算符的产量/产量的一个很好的练习。
我希望本文对您自己的数据库测试套件有所帮助。请随时在评论中留下您的问题,祝您编码愉快!
以上是Pytest 和 PostgreSQL:每次测试的新数据库(第二部分)的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优
