在博客文章如何为 Java 21 Lambda 函数创建、发布和使用层中,我们解释了如何使用 Java 21 发布第一个 Lambda 层。在文章中,使用 Lambda 层从 Java 21 开始测量冷热值 (1)我们使用此 Lambda 层创建应用程序,然后在启用 SnapStart 的情况下测量冷启动和热启动时间,启用 SnapStart 并应用 DynamoDB 调用启动优化,并将结果与我们的测量结果进行比较,而无需使用 Lambda 层并在 POM 文件中提供所有依赖项我们在使用不同的 Lambda 内存设置从 Java 21 测量冷热启动一文中做到了这一点。在本文中,我们将创建另一个包含所有依赖项的 Lambda 层,并在我们的应用程序中使用该层,进行相同的测量并将结果与之前的实验进行比较。
为了进行探索,我们将使用示例 Lambda 层来创建 Lambda 层,并使用 Java 21 运行时将所有 依赖项打包到该层中:
我们还将使用示例应用程序。 AWS SAM 模板中基本上定义了 2 个 Lambda 函数,它们都响应 API 网关请求并通过从 DynamoDB 从 API 网关收到的 ID 检索产品。第一个 Lambda 函数 GetProductByIdWithPureJava21LambdaWithAllLayer 可以在有或没有 SnapStart 的情况下使用,第二个 GetProductByIdWithPureJava21LambdaAndPrimingWithAllLayer 使用 SnapStart 和 DynamoDB 请求调用启动。
为了将 Lambda 层与之前为 AWS SAM 模板中的 Lambda 函数创建的所有依赖项一起使用,我们必须向 Lambda 函数添加 Layers 参数,如下所示:
Type: AWS::Serverless::Function Properties: FunctionName: GetProductByIdWithPureJava21LambdaWithAllLayer AutoPublishAlias: liveVersion Layers: - !Sub arn:aws:lambda:${AWS::Region}:${AWS::AccountId}:layer:aws-pure-java-21-common-lambda-layer:1 Handler: software.amazonaws.example.product.handler.GetProductByIdHandler::handleRequest
请将层 ARN(包括版本)替换为您自己的,这是发布层命令 (aws lambdapublish-layer-version) 的输出。
在 pom.xml 中,您可以看到 provided 范围内的所有依赖项(通过附加的 Lambda 层)。
以下实验的结果基于重现超过 100 次冷启动和大约 100,000 次热启动,实验运行时间约为 1 小时。为此(以及我上一篇文章中的实验),我使用了负载测试工具嘿,但是您可以使用任何您想要的工具,例如 Serverless-artillery 或 Postman。
我通过为 Lambda 函数提供 1024 MB 内存并通过环境变量传递以下编译选项来运行所有这些实验:JAVA_TOOL_OPTIONS: "-XX:+TieredCompilation -XX:TieredStopAtLevel=1"(不进行分析的客户端编译)。
在下表中,我还将提供不使用 Lambda 层(并在 POM 文件中提供所有依赖项)的测量结果,这是我们在使用不同 Lambda 内存通过 Java 21 测量冷启动和热启动一文中所做的设置和使用普通Lambda层直接进行比较时的测量。
缩写 c 表示冷启动,w 表示热启动。
不使用 SnapStart 的冷 (c) 和热 (w) 启动时间(以毫秒为单位):
Experiment | c p50 | c p75 | c p90 | c p99 | c p99.9 | c max | w p50 | w p75 | w p90 | w p99 | w p99.9 | w max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
with all dependencies Lambda Layer | 2824.33 | 2884.24 | 2963.14 | 3324.07 | 3622.44 | 3625.58 | 5.50 | 6.20 | 7.16 | 15.50 | 46.19 | 1278.41 |
with common Lambda Layer | 3497.91 | 3597.18 | 3695.58 | 3800.47 | 3908.33 | 4011.71 | 5.82 | 6.72 | 8.00 | 17.97 | 55.48 | 1709.13 |
w/o Lambda Layer | 3157.6 | 3213.85 | 3270.8 | 3428.2 | 3601.12 | 3725.02 | 5.77 | 6.50 | 7.81 | 20.65 | 90.20 | 1423.63 |
没有启动的 SnapStart 的冷 (c) 和热 (w) 启动时间(以毫秒为单位):
Experiment | c p50 | c p75 | c p90 | c p99 | c p99.9 | c max | w p50 | w p75 | w p90 | w p99 | w p99.9 | w max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
with all dependencies Lambda Layer | 1706.64 | 1767.40 | 1893.59 | 2314.91 | 2646.68 | 2647.33 | 5.59 | 6.25 | 7.21 | 15.75 | 48.06 | 1403.71 |
with common Lambda Layer | 2047.12 | 2124.24 | 2439.49 | 2705.52 | 2735.43 | 2831.59 | 5.68 | 6.40 | 7.45 | 17.06 | 48.45 | 2139.74 |
w/o Lambda Layer | 1626.69 | 1741.10 | 2040.99 | 2219.75 | 2319.54 | 2321.64 | 5.64 | 6.41 | 7.87 | 21.40 | 99.81 | 1355.09 |
使用 SnapStart 和 DynamoDB 调用启动冷 (c) 和热 (w) 时间(以毫秒为单位):
Experiment | c p50 | c p75 | c p90 | c p99 | c p99.9 | c max | w p50 | w p75 | w p90 | w p99 | w p99.9 | w max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
with all dependencies Lambda Layer | 747.47 | 786.56 | 932.23 | 1099.38 | 1666.18 | 1666.62 | 5.42 | 5.91 | 7.39 | 16.39 | 45.09 | 574.61 |
with common Lambda Layer | 713.88 | 766.38 | 1141.94 | 1181.41 | 1214.94 | 1215.32 | 5.59 | 6.30 | 7.39 | 16.39 | 45.09 | 574.61 |
w/o Lambda Layer | 702.55 | 759.52 | 1038.50 | 1169.66 | 1179.05 | 1179.36 | 5.73 | 6.51 | 7.87 | 21.75 | 92.19 | 328.41 |
在本文中,我们使用具有所有依赖项的 Lambda 层创建了应用程序,然后在未启用 SnapStart 的情况下测量了冷启动和热启动时间,在启用 SnapStart 的情况下还应用了 DynamoDB 调用启动优化,并将结果与我们在不使用 Lambda 的情况下的测量结果进行了比较层(并在 POM 文件中提供所有依赖项),这是我们在使用不同 Lambda 内存设置和通用 Lambda 层从 Java 21 测量冷热启动一文中所做的。
即使结果存在一些偏差,但使用具有所有依赖项的 Lambda 层进行多次测量后趋势始终相同:
因此 Lambda 层的使用(取决于您放置的内容以及作为应用程序中的依赖项提供的内容)会增加一些不可预测性,您应该始终进行自己的测量!
以上是AWS SnapStart - 使用 Lambda 层通过 Java 测量冷启动和热启动部分(2)的详细内容。更多信息请关注PHP中文网其他相关文章!