首页 后端开发 Python教程 Mastering CRUD Operations with OpenSearch in Python: A Practical Guide

Mastering CRUD Operations with OpenSearch in Python: A Practical Guide

Sep 21, 2024 pm 10:15 PM

Mastering CRUD Operations with OpenSearch in Python: A Practical Guide

OpenSearch, an open-source alternative to Elasticsearch, is a powerful search and analytics engine built to handle large datasets with ease. In this blog, we’ll demonstrate how to perform basic CRUD (Create, Read, Update, Delete) operations in OpenSearch using Python.

Prerequisites:

  • Python 3.7+
  • OpenSearch installed locally using Docker
  • Familiarity with RESTful APIs

Step 1: Setting Up OpenSearch Locally with Docker

To get started, we need a local OpenSearch instance. Below is a simple docker-compose.yml file that spins up OpenSearch and OpenSearch Dashboards.

version: '3'
services:
  opensearch-test-node-1:
    image: opensearchproject/opensearch:2.13.0
    container_name: opensearch-test-node-1
    environment:
      - cluster.name=opensearch-test-cluster
      - node.name=opensearch-test-node-1
      - discovery.seed_hosts=opensearch-test-node-1,opensearch-test-node-2
      - cluster.initial_cluster_manager_nodes=opensearch-test-node-1,opensearch-test-node-2
      - bootstrap.memory_lock=true
      - "OPENSEARCH_JAVA_OPTS=-Xms512m -Xmx512m"
      - "DISABLE_INSTALL_DEMO_CONFIG=true"
      - "DISABLE_SECURITY_PLUGIN=true"
    ulimits:
      memlock:
        soft: -1
        hard: -1
      nofile:
        soft: 65536
        hard: 65536
    volumes:
      - opensearch-test-data1:/usr/share/opensearch/data
    ports:
      - 9200:9200
      - 9600:9600
    networks:
      - opensearch-test-net

  opensearch-test-node-2:
    image: opensearchproject/opensearch:2.13.0
    container_name: opensearch-test-node-2
    environment:
      - cluster.name=opensearch-test-cluster
      - node.name=opensearch-test-node-2
      - discovery.seed_hosts=opensearch-test-node-1,opensearch-test-node-2
      - cluster.initial_cluster_manager_nodes=opensearch-test-node-1,opensearch-test-node-2
      - bootstrap.memory_lock=true
      - "OPENSEARCH_JAVA_OPTS=-Xms512m -Xmx512m"
      - "DISABLE_INSTALL_DEMO_CONFIG=true"
      - "DISABLE_SECURITY_PLUGIN=true"
    ulimits:
      memlock:
        soft: -1
        hard: -1
      nofile:
        soft: 65536
        hard: 65536
    volumes:
      - opensearch-test-data2:/usr/share/opensearch/data
    networks:
      - opensearch-test-net

  opensearch-test-dashboards:
    image: opensearchproject/opensearch-dashboards:2.13.0
    container_name: opensearch-test-dashboards
    ports:
      - 5601:5601
    expose:
      - "5601"
    environment:
      - 'OPENSEARCH_HOSTS=["http://opensearch-test-node-1:9200","http://opensearch-test-node-2:9200"]'
      - "DISABLE_SECURITY_DASHBOARDS_PLUGIN=true"
    networks:
      - opensearch-test-net

volumes:
  opensearch-test-data1:
  opensearch-test-data2:

networks:
  opensearch-test-net:

登录后复制

Run the following command to bring up your OpenSearch instance:
docker-compose up
OpenSearch will be accessible at http://localhost:9200.

Step 2: Setting Up the Python Environment

python -m venv .venv
source .venv/bin/activate
pip install opensearch-py
登录后复制

We'll also structure our project as follows:

├── interfaces.py
├── main.py
├── searchservice.py
├── docker-compose.yml
登录后复制

Step 3: Defining Interfaces and Resources (interfaces.py)

In the interfaces.py file, we define our Resource and Resources classes. These will help us dynamically handle different resource types in OpenSearch (in this case, users).

from dataclasses import dataclass, field

@dataclass
class Resource:
    name: str

    def __post_init__(self) -> None:
        self.name = self.name.lower()

@dataclass
class Resources:
    users: Resource = field(default_factory=lambda: Resource("Users"))

登录后复制

Step 4: CRUD Operations with OpenSearch (searchservice.py)

In searchservice.py, we define an abstract class SearchService to outline the required operations. The HTTPOpenSearchService class then implements these CRUD methods, interacting with the OpenSearch client.

# coding: utf-8

import abc
import logging
import typing as t
from dataclasses import dataclass
from uuid import UUID

from interfaces import Resource, Resources
from opensearchpy import NotFoundError, OpenSearch

resources = Resources()


class SearchService(abc.ABC):
    def search(
        self,
        kinds: t.List[Resource],
        tenants_id: UUID,
        companies_id: UUID,
        query: t.Dict[str, t.Any],
    ) -> t.Dict[t.Literal["hits"], t.Dict[str, t.Any]]:
        raise NotImplementedError

    def delete_index(
        self,
        kind: Resource,
        tenants_id: UUID,
        companies_id: UUID,
        data: t.Dict[str, t.Any],
    ) -> None:
        raise NotImplementedError

    def index(
        self,
        kind: Resource,
        tenants_id: UUID,
        companies_id: UUID,
        data: t.Dict[str, t.Any],
    ) -> t.Dict[str, t.Any]:
        raise NotImplementedError

    def delete_document(
        self,
        kind: Resource,
        tenants_id: UUID,
        companies_id: UUID,
        document_id: str,
    ) -> t.Optional[t.Dict[str, t.Any]]:
        raise NotImplementedError

    def create_index(
        self,
        kind: Resource,
        tenants_id: UUID,
        companies_id: UUID,
        data: t.Dict[str, t.Any],
    ) -> None:
        raise NotImplementedError


@dataclass(frozen=True)
class HTTPOpenSearchService(SearchService):
    client: OpenSearch

    def _gen_index(
        self,
        kind: Resource,
        tenants_id: UUID,
        companies_id: UUID,
    ) -> str:
        return (
            f"tenant_{str(UUID(str(tenants_id)))}"
            f"_company_{str(UUID(str(companies_id)))}"
            f"_kind_{kind.name}"
        )

    def index(
        self,
        kind: Resource,
        tenants_id: UUID,
        companies_id: UUID,
        data: t.Dict[str, t.Any],
    ) -> t.Dict[str, t.Any]:
        self.client.index(
            index=self._gen_index(kind, tenants_id, companies_id),
            body=data,
            id=data.get("id"),
        )
        return data

    def delete_index(
        self,
        kind: Resource,
        tenants_id: UUID,
        companies_id: UUID,
    ) -> None:
        try:
            index = self._gen_index(kind, tenants_id, companies_id)
            if self.client.indices.exists(index):
                self.client.indices.delete(index)
        except NotFoundError:
            pass

    def create_index(
        self,
        kind: Resource,
        tenants_id: UUID,
        companies_id: UUID,
    ) -> None:
        body: t.Dict[str, t.Any] = {}
        self.client.indices.create(
            index=self._gen_index(kind, tenants_id, companies_id),
            body=body,
        )

    def search(
        self,
        kinds: t.List[Resource],
        tenants_id: UUID,
        companies_id: UUID,
        query: t.Dict[str, t.Any],
    ) -> t.Dict[t.Literal["hits"], t.Dict[str, t.Any]]:
        return self.client.search(
            index=",".join(
                [self._gen_index(kind, tenants_id, companies_id) for kind in kinds]
            ),
            body={"query": query},
        )

    def delete_document(
        self,
        kind: Resource,
        tenants_id: UUID,
        companies_id: UUID,
        document_id: str,
    ) -> t.Optional[t.Dict[str, t.Any]]:
        try:
            response = self.client.delete(
                index=self._gen_index(kind, tenants_id, companies_id),
                id=document_id,
            )
            return response
        except Exception as e:
            logging.error(f"Error deleting document: {e}")
            return None

登录后复制

Step 5: Implementing CRUD in Main (main.py)

In main.py, we demonstrate how to:

  • Create an index in OpenSearch.
  • Index documents with sample user data.
  • Search for documents based on a query.
  • Delete a document using its ID.

main.py

# coding=utf-8

import logging
import os
import typing as t
from uuid import uuid4

import searchservice
from interfaces import Resources
from opensearchpy import OpenSearch

resources = Resources()

logging.basicConfig(level=logging.INFO)

search_service = searchservice.HTTPOpenSearchService(
    client=OpenSearch(
        hosts=[
            {
                "host": os.getenv("OPENSEARCH_HOST", "localhost"),
                "port": os.getenv("OPENSEARCH_PORT", "9200"),
            }
        ],
        http_auth=(
            os.getenv("OPENSEARCH_USERNAME", ""),
            os.getenv("OPENSEARCH_PASSWORD", ""),
        ),
        use_ssl=False,
        verify_certs=False,
    ),
)

tenants_id: str = "f0835e2d-bd68-406c-99a7-ad63a51e9ef9"
companies_id: str = "bf58c749-c90a-41e2-b66f-6d98aae17a6c"
search_str: str = "frank"
document_id_to_delete: str = str(uuid4())

fake_data: t.List[t.Dict[str, t.Any]] = [
    {"id": document_id_to_delete, "name": "Franklin", "tech": "python,node,golang"},
    {"id": str(uuid4()), "name": "Jarvis", "tech": "AI"},
    {"id": str(uuid4()), "name": "Parry", "tech": "Golang"},
    {"id": str(uuid4()), "name": "Steve", "tech": "iOS"},
    {"id": str(uuid4()), "name": "Frank", "tech": "node"},
]

search_service.delete_index(
    kind=resources.users, tenants_id=tenants_id, companies_id=companies_id
)

search_service.create_index(
    kind=resources.users,
    tenants_id=tenants_id,
    companies_id=companies_id,
)

for item in fake_data:
    search_service.index(
        kind=resources.users,
        tenants_id=tenants_id,
        companies_id=companies_id,
        data=dict(tenants_id=tenants_id, companies_id=companies_id, **item),
    )

search_query: t.Dict[str, t.Any] = {
    "bool": {
        "must": [],
        "must_not": [],
        "should": [],
        "filter": [
            {"term": {"tenants_id.keyword": tenants_id}},
            {"term": {"companies_id.keyword": companies_id}},
        ],
    }
}
search_query["bool"]["must"].append(
    {
        "multi_match": {
            "query": search_str,
            "type": "phrase_prefix",
            "fields": ["name", "tech"],
        }
    }
)

search_results = search_service.search(
    kinds=[resources.users],
    tenants_id=tenants_id,
    companies_id=companies_id,
    query=search_query,
)

final_result = search_results.get("hits", {}).get("hits", [])
for item in final_result:
    logging.info(["Item -> ", item.get("_source", {})])

deleted_result = search_service.delete_document(
    kind=resources.users,
    tenants_id=tenants_id,
    companies_id=companies_id,
    document_id=document_id_to_delete,
)
logging.info(["Deleted result -> ", deleted_result])

登录后复制

Step 6: Running the project

docker compose up
python main.py

Results:

It should print found & deleted records information.

Step 7: Conclusion

In this blog, we’ve demonstrated how to set up OpenSearch locally using Docker and perform basic CRUD operations with Python. OpenSearch provides a powerful and scalable solution for managing and querying large datasets. While this guide focuses on integrating OpenSearch with dummy data, in real-world applications, OpenSearch is often used as a read-optimized store for faster data retrieval. In such cases, it is common to implement different indexing strategies to ensure data consistency by updating both the primary database and OpenSearch concurrently.

This ensures that OpenSearch remains in sync with your primary data source, optimizing both performance and accuracy in data retrieval.

References:

https://github.com/FranklinThaker/opensearch-integration-example

以上是Mastering CRUD Operations with OpenSearch in Python: A Practical Guide的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

Python vs.C:申请和用例 Python vs.C:申请和用例 Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

您可以在2小时内学到多少python? 您可以在2小时内学到多少python? Apr 09, 2025 pm 04:33 PM

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

Python:游戏,Guis等 Python:游戏,Guis等 Apr 13, 2025 am 12:14 AM

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

2小时的Python计划:一种现实的方法 2小时的Python计划:一种现实的方法 Apr 11, 2025 am 12:04 AM

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python:探索其主要应用程序 Python:探索其主要应用程序 Apr 10, 2025 am 09:41 AM

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

Python与C:学习曲线和易用性 Python与C:学习曲线和易用性 Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和时间:充分利用您的学习时间 Python和时间:充分利用您的学习时间 Apr 14, 2025 am 12:02 AM

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python:自动化,脚本和任务管理 Python:自动化,脚本和任务管理 Apr 16, 2025 am 12:14 AM

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

See all articles