Mastering TypeScript: Understanding the Power of extends
The extends keyword in TypeScript is a Swiss Army knife of sorts. It's used in multiple contexts, including inheritance, generics, and conditional types. Understanding how to use extends effectively can lead to more robust, reusable, and type-safe code.
Inheritance using extends
One of the primary uses of extends is in inheritance, allowing you to create new interfaces or classes that build upon existing ones.
interface User { firstName: string; lastName: string; email: string; } interface StaffUser extends User { roles: string[]; department: string; } const regularUser: User = { firstName: "John", lastName: "Doe", email: "john@example.com" }; const staffMember: StaffUser = { firstName: "Jane", lastName: "Smith", email: "jane@company.com", roles: ["Manager", "Developer"], department: "Engineering" };
In this example, StaffUser extends User, inheriting all its properties and adding new ones. This allows us to create more specific types based on more general ones.
Class Inheritance
The extends keyword is also used for class inheritance:
class Animal { constructor(public name: string) {} makeSound(): void { console.log("Some generic animal sound"); } } class Dog extends Animal { constructor(name: string, public breed: string) { super(name); } makeSound(): void { console.log("Woof! Woof!"); } fetch(): void { console.log(`${this.name} is fetching the ball!`); } } const myDog = new Dog("Buddy", "Golden Retriever"); myDog.makeSound(); // Output: Woof! Woof! myDog.fetch(); // Output: Buddy is fetching the ball!
Here, Dog extends Animal, inheriting its properties and methods, and also adding its own.
Type Constraints in Generics
The extends keyword is crucial when working with generics, allowing us to constrain the types that can be used with a generic function or class.
interface Printable { print(): void; } function printObject<T extends Printable>(obj: T) { obj.print(); } class Book implements Printable { print() { console.log("Printing a book."); } } class Magazine implements Printable { print() { console.log("Printing a magazine."); } } const myBook = new Book(); const myMagazine = new Magazine(); printObject(myBook); // Output: Printing a book. printObject(myMagazine); // Output: Printing a magazine. // printObject(42); // Error, number doesn't have a 'print' method
- interface Printable: Here, we define an interface named Printable. This interface declares a contract that any class implementing it must adhere to. Tha contract specifies that any class implementing Printable must provide a method named print that takes no arguments and returns void
-
function printObject
(obj: T): This is a generic function named printObject. It takes a single argument named obj, which is type T. The type parameter T is constrained to types that extend (implement) the Printable interface can bef used as the argument to this function. - class Book implements Printable and class Magazine implements Printable: Here, we define two classes, Book and Magazine, both of which implement the Printable interface. This means that these classes must provide a print method as required by the contract of the Printable interface.
- const myBook = new Book(); and const myMagazine = new Magazine();: We create instances of the Book and Magazine classes.
- printObject(myBook); and printObject(myMagazine);: We call the printObject function with the instances of Book and Magazine. Since both Book and Magazine classes implement the Printable interface, they fulfill the constraint of the T extends Printable type parameter. Inside the function, the print method of the appropriate class is called, resulting in the expected output.
- // printObject(42);: If we try to call printObject with a type that doesn't implement the Printable interface, such as the number 42, TypeScript will raise an error. This is because the type constraint is not satisfied, as number doesn't have a print method as required by the Printable interface.
In summary, the extends keyword in the context of function printObject
Conditional Types
T extends U ? X : Y
- T is the type that being checked
- U is the condition type that T is being checked against.
- X is the type that the conditional type evaluates to if T extends (is assignable to) U
- Y is the type that the conditional type evaluates to if T does not extend U
type ExtractNumber<T> = T extends number ? T : never; type NumberOrNever = ExtractNumber<number>; // number type StringOrNever = ExtractNumber<string>; // never
Here, the ExtractNumber type takes a type parameter T. The conditional type checks whether T extends the number type. if does, the type resolves to T (which is number type). If it doesn't, the type resolves to never.
The extends Keyword with Union Types
Now, let's consider the expression A | B | C extends A. This might seem counterintuitive at first, but in TypeScript, this condition is actually false. Here's why:
- In TypeScript, when you use extends with a union type on the left side, it's equivalent to asking: "Is every possible type in this union assignable to the type on the right?"
- In other words, A | B | C extends A is asking: "Can A be assigned to A, AND can B be assigned to A, AND can C be assigned to A?"
- While A can certainly be assigned to A, B and C might not be assignable to A (unless they are subtypes of A), so the overall result is false.
type Fruit = "apple" | "banana" | "cherry"; type CitrusFruit = "lemon" | "orange"; type IsCitrus<T> = T extends CitrusFruit ? true : false; type Test1 = IsCitrus<"lemon">; // true type Test2 = IsCitrus<"apple">; // false type Test3 = IsCitrus<Fruit>; // false
In this example, IsCitrus
Best Practices and Tips
- Use extends for meaningful relationships: Only use inheritance when there's a clear "is-a" relationship between types.
- Prefer composition over inheritance: In many cases, composition (using interfaces and type intersections) can be more flexible than class inheritance.
- Be cautious with deep inheritance chains: Deep inheritance can make code harder to understand and maintain.
- Leverage conditional types for flexible APIs: Use conditional types with extends to create APIs that adapt based on input types.
- Use extends in generics to create reusable, type-safe functions: This allows you to write functions that work with a variety of types while still maintaining type safety
以上是Mastering TypeScript: Understanding the Power of extends的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

从C/C 转向JavaScript需要适应动态类型、垃圾回收和异步编程等特点。1)C/C 是静态类型语言,需手动管理内存,而JavaScript是动态类型,垃圾回收自动处理。2)C/C 需编译成机器码,JavaScript则为解释型语言。3)JavaScript引入闭包、原型链和Promise等概念,增强了灵活性和异步编程能力。

JavaScript在Web开发中的主要用途包括客户端交互、表单验证和异步通信。1)通过DOM操作实现动态内容更新和用户交互;2)在用户提交数据前进行客户端验证,提高用户体验;3)通过AJAX技术实现与服务器的无刷新通信。

JavaScript在现实世界中的应用包括前端和后端开发。1)通过构建TODO列表应用展示前端应用,涉及DOM操作和事件处理。2)通过Node.js和Express构建RESTfulAPI展示后端应用。

理解JavaScript引擎内部工作原理对开发者重要,因为它能帮助编写更高效的代码并理解性能瓶颈和优化策略。1)引擎的工作流程包括解析、编译和执行三个阶段;2)执行过程中,引擎会进行动态优化,如内联缓存和隐藏类;3)最佳实践包括避免全局变量、优化循环、使用const和let,以及避免过度使用闭包。

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

Python和JavaScript在开发环境上的选择都很重要。1)Python的开发环境包括PyCharm、JupyterNotebook和Anaconda,适合数据科学和快速原型开发。2)JavaScript的开发环境包括Node.js、VSCode和Webpack,适用于前端和后端开发。根据项目需求选择合适的工具可以提高开发效率和项目成功率。

C和C 在JavaScript引擎中扮演了至关重要的角色,主要用于实现解释器和JIT编译器。 1)C 用于解析JavaScript源码并生成抽象语法树。 2)C 负责生成和执行字节码。 3)C 实现JIT编译器,在运行时优化和编译热点代码,显着提高JavaScript的执行效率。
