首页 > web前端 > js教程 > Kth Largest Element in an Array

Kth Largest Element in an Array

Mary-Kate Olsen
发布: 2024-09-24 06:16:01
原创
464 人浏览过

Kth Largest Element in an Array

#️⃣ Array, Priority Queue, Quick Select

https://leetcode.com/problems/kth-largest-element-in-an-array/description

? Understand Problem

If the array is [8, 6, 12, 9, 3, 4] and k is 2, you need to find the 2nd largest element in this array. First, you will sort the array: [3, 4, 6, 8, 9, 12] The output will be 9 because it is the second-largest element.

✅ Bruteforce

var findKthLargest = function(nums, k) {
    // Sort the array in ascending order
    nums.sort((a, b) => a - b);

    // Return the kth largest element
    return nums[nums.length - k];
};
登录后复制

Explanation:

  1. Sorting the Array: The array is sorted in ascending order using the sort method.
  2. Finding the kth Largest Element: The kth largest element is found by accessing the element at the index nums.length - k.

Time Complexity:

  • Sorting: The time complexity of sorting an array is (O(nlog n)), where (n) is the length of the array.
  • Accessing the Element: Accessing an element in an array is O(1).

So, the overall time complexity is O(n log n).

Space Complexity:

  • In-Place Sorting: The sort method sorts the array in place, so the space complexity is O(1) for the sorting operation.
  • Overall: Since we are not using any additional data structures, the overall space complexity is O(1).

✅ Better

var findKthLargest = function(nums, k) {
        // Create a min-heap using a priority queue
        let minHeap = new MinPriorityQueue();

        // Add the first k elements to the heap
        for (let i = 0; i < k; i++) {
            //minHeap.enqueue(nums[i]): Adds the element nums[i] to the min-heap.
            minHeap.enqueue(nums[i]);
        }

        // Iterate through the remaining elements
        for (let i = k; i < nums.length; i++) {
            //minHeap.front().element: Retrieves the smallest element in the min-heap without removing it.
            if (minHeap.front().element < nums[i]) {
                // minHeap.dequeue(): Removes the smallest element from the min-heap.
                minHeap.dequeue();
                // Add the current element
                minHeap.enqueue(nums[i]);
            }
        }

        // The root of the heap is the kth largest element
        return minHeap.front().element;
    };
登录后复制

Explanation:

  1. Initial Array: [2, 1, 6, 3, 5, 4]
  2. k = 3: We need to find the 3rd largest element.

Step 1: Add the first k elements to the min-heap

  • Heap after adding 2: [2]
  • Heap after adding 1: [1, 2]
  • Heap after adding 6: [1, 2, 6]

Step 2: Iterate through the remaining elements

  • Current element = 3

    • Heap before comparison: [1, 2, 6]
    • Smallest element in heap (minHeap.front().element): 1
    • Comparison: 3 > 1
    • Action: Remove 1 and add 3
    • Heap after update: [2, 6, 3]
    • Current element = 5

      • Heap before comparison: [2, 6, 3]
      • Smallest element in heap (minHeap.front().element): 2
      • Comparison: 5 > 2
      • Action: Remove 2 and add 5
      • Heap after update: [3, 6, 5]
    • Current element = 4

      • Heap before comparison: [3, 6, 5]
      • Smallest element in heap (minHeap.front().element): 3
      • Comparison: 4 > 3
      • Action: Remove 3 and add 4
      • Heap after update: [4, 6, 5]
    • Final Step: Return the root of the heap

      • Heap: [4, 6, 5]
      • 3rd largest element: 4 (the root of the heap)

      Time Complexity:

      • Heap Operations: Inserting and removing elements from the heap takes O(log k) time.
      • Overall: Since we perform these operations for each of the n elements in the array, the overall time complexity is O(n log k).

      Space Complexity:

      • Heap Storage: The space complexity is O(k) because the heap stores at most k elements.

      ✅ Best

      Note: Even though Leetcode restricts quick select, you should remember this approach because it passes most test cases

      //Quick Select Algo
      
      function quickSelect(list, left, right, k)
      
         if left = right
            return list[left]
      
         Select a pivotIndex between left and right
      
         pivotIndex := partition(list, left, right, 
                                        pivotIndex)
         if k = pivotIndex
            return list[k]
         else if k < pivotIndex
            right := pivotIndex - 1
         else
            left := pivotIndex + 1
      
      登录后复制
      var findKthLargest = function(nums, k) {
          // Call the quickSelect function to find the kth largest element
          return quickSelect(nums, 0, nums.length - 1, nums.length - k);
      };
      
      function quickSelect(nums, low, high, index) {
          // If the low and high pointers are the same, return the element at low
          if (low === high) return nums[low];
      
          // Partition the array and get the pivot index
          let pivotIndex = partition(nums, low, high);
      
          // If the pivot index is the target index, return the element at pivot index
          if (pivotIndex === index) {
              return nums[pivotIndex];
          } else if (pivotIndex > index) {
              // If the pivot index is greater than the target index, search in the left partition
              return quickSelect(nums, low, pivotIndex - 1, index);
          } else {
              // If the pivot index is less than the target index, search in the right partition
              return quickSelect(nums, pivotIndex + 1, high, index);
          }
      }
      
      function partition(nums, low, high) {
          // Choose the pivot element
          let pivot = nums[high];
          let pointer = low;
      
          // Rearrange the elements based on the pivot
          for (let i = low; i < high; i++) {
              if (nums[i] <= pivot) {
                  [nums[i], nums[pointer]] = [nums[pointer], nums[i]];
                  pointer++;
              }
          }
      
          // Place the pivot element in its correct position
          [nums[pointer], nums[high]] = [nums[high], nums[pointer]];
          return pointer;
      }
      
      登录后复制

      Explanation:

      1. Initial Array: [3, 2, 1, 5, 6, 4]
      2. k = 2: We need to find the 2nd largest element.

      Step 1: Partition the array

      • Pivot element = 4
      • Array after partitioning: [3, 2, 1, 4, 6, 5]
      • Pivot index = 3

      Step 2: Recursive Selection

      • Target index = 4 (since we need the 2nd largest element, which is the 4th index in 0-based indexing)
      • Pivot index (3) < Target index (4): Search in the right partition [6, 5]

      Step 3: Partition the right partition

      • Pivot element = 5
      • Array after partitioning: [3, 2, 1, 4, 5, 6]
      • Pivot index = 4

      Final Step: Return the element at the target index

      • Element at index 4: 5

      Time Complexity:

      • Average Case: The average time complexity of Quickselect is O(n).
      • Worst Case: The worst-case time complexity is O(n^2), but this is rare with good pivot selection.

      Space Complexity:

      • In-Place: The space complexity is O(1) because the algorithm works in place.

      以上是Kth Largest Element in an Array的详细内容。更多信息请关注PHP中文网其他相关文章!

来源:dev.to
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
作者最新文章
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板