Kth Largest Element in an Array
#️⃣ Array, Priority Queue, Quick Select
https://leetcode.com/problems/kth-largest-element-in-an-array/description
? Understand Problem
If the array is [8, 6, 12, 9, 3, 4] and k is 2, you need to find the 2nd largest element in this array. First, you will sort the array: [3, 4, 6, 8, 9, 12] The output will be 9 because it is the second-largest element.
✅ Bruteforce
var findKthLargest = function(nums, k) { // Sort the array in ascending order nums.sort((a, b) => a - b); // Return the kth largest element return nums[nums.length - k]; };
Explanation:
- Sorting the Array: The array is sorted in ascending order using the sort method.
- Finding the kth Largest Element: The kth largest element is found by accessing the element at the index nums.length - k.
Time Complexity:
- Sorting: The time complexity of sorting an array is (O(nlog n)), where (n) is the length of the array.
- Accessing the Element: Accessing an element in an array is O(1).
So, the overall time complexity is O(n log n).
Space Complexity:
- In-Place Sorting: The sort method sorts the array in place, so the space complexity is O(1) for the sorting operation.
- Overall: Since we are not using any additional data structures, the overall space complexity is O(1).
✅ Better
var findKthLargest = function(nums, k) { // Create a min-heap using a priority queue let minHeap = new MinPriorityQueue(); // Add the first k elements to the heap for (let i = 0; i < k; i++) { //minHeap.enqueue(nums[i]): Adds the element nums[i] to the min-heap. minHeap.enqueue(nums[i]); } // Iterate through the remaining elements for (let i = k; i < nums.length; i++) { //minHeap.front().element: Retrieves the smallest element in the min-heap without removing it. if (minHeap.front().element < nums[i]) { // minHeap.dequeue(): Removes the smallest element from the min-heap. minHeap.dequeue(); // Add the current element minHeap.enqueue(nums[i]); } } // The root of the heap is the kth largest element return minHeap.front().element; };
Explanation:
- Initial Array: [2, 1, 6, 3, 5, 4]
- k = 3: We need to find the 3rd largest element.
Step 1: Add the first k elements to the min-heap
- Heap after adding 2: [2]
- Heap after adding 1: [1, 2]
- Heap after adding 6: [1, 2, 6]
Step 2: Iterate through the remaining elements
-
Current element = 3
- Heap before comparison: [1, 2, 6]
- Smallest element in heap (minHeap.front().element): 1
- Comparison: 3 > 1
- Action: Remove 1 and add 3
- Heap after update: [2, 6, 3]
-
Current element = 5
- Heap before comparison: [2, 6, 3]
- Smallest element in heap (minHeap.front().element): 2
- Comparison: 5 > 2
- Action: Remove 2 and add 5
- Heap after update: [3, 6, 5]
-
Current element = 4
- Heap before comparison: [3, 6, 5]
- Smallest element in heap (minHeap.front().element): 3
- Comparison: 4 > 3
- Action: Remove 3 and add 4
- Heap after update: [4, 6, 5]
- Heap: [4, 6, 5]
- 3rd largest element: 4 (the root of the heap)
- Heap Operations: Inserting and removing elements from the heap takes O(log k) time.
- Overall: Since we perform these operations for each of the n elements in the array, the overall time complexity is O(n log k).
- Heap Storage: The space complexity is O(k) because the heap stores at most k elements.
- Initial Array: [3, 2, 1, 5, 6, 4]
- k = 2: We need to find the 2nd largest element.
- Pivot element = 4
- Array after partitioning: [3, 2, 1, 4, 6, 5]
- Pivot index = 3
- Target index = 4 (since we need the 2nd largest element, which is the 4th index in 0-based indexing)
- Pivot index (3) < Target index (4): Search in the right partition [6, 5]
- Pivot element = 5
- Array after partitioning: [3, 2, 1, 4, 5, 6]
- Pivot index = 4
- Element at index 4: 5
- Average Case: The average time complexity of Quickselect is O(n).
- Worst Case: The worst-case time complexity is O(n^2), but this is rare with good pivot selection.
- In-Place: The space complexity is O(1) because the algorithm works in place.
Final Step: Return the root of the heap
Time Complexity:
Space Complexity:
✅ Best
Note: Even though Leetcode restricts quick select, you should remember this approach because it passes most test cases
//Quick Select Algo function quickSelect(list, left, right, k) if left = right return list[left] Select a pivotIndex between left and right pivotIndex := partition(list, left, right, pivotIndex) if k = pivotIndex return list[k] else if k < pivotIndex right := pivotIndex - 1 else left := pivotIndex + 1
登录后复制var findKthLargest = function(nums, k) { // Call the quickSelect function to find the kth largest element return quickSelect(nums, 0, nums.length - 1, nums.length - k); }; function quickSelect(nums, low, high, index) { // If the low and high pointers are the same, return the element at low if (low === high) return nums[low]; // Partition the array and get the pivot index let pivotIndex = partition(nums, low, high); // If the pivot index is the target index, return the element at pivot index if (pivotIndex === index) { return nums[pivotIndex]; } else if (pivotIndex > index) { // If the pivot index is greater than the target index, search in the left partition return quickSelect(nums, low, pivotIndex - 1, index); } else { // If the pivot index is less than the target index, search in the right partition return quickSelect(nums, pivotIndex + 1, high, index); } } function partition(nums, low, high) { // Choose the pivot element let pivot = nums[high]; let pointer = low; // Rearrange the elements based on the pivot for (let i = low; i < high; i++) { if (nums[i] <= pivot) { [nums[i], nums[pointer]] = [nums[pointer], nums[i]]; pointer++; } } // Place the pivot element in its correct position [nums[pointer], nums[high]] = [nums[high], nums[pointer]]; return pointer; }
登录后复制Explanation:
Step 1: Partition the array
Step 2: Recursive Selection
Step 3: Partition the right partition
Final Step: Return the element at the target index
Time Complexity:
Space Complexity:
以上是Kth Largest Element in an Array的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

JavaScript是现代Web开发的基石,它的主要功能包括事件驱动编程、动态内容生成和异步编程。1)事件驱动编程允许网页根据用户操作动态变化。2)动态内容生成使得页面内容可以根据条件调整。3)异步编程确保用户界面不被阻塞。JavaScript广泛应用于网页交互、单页面应用和服务器端开发,极大地提升了用户体验和跨平台开发的灵活性。

Python和JavaScript开发者的薪资没有绝对的高低,具体取决于技能和行业需求。1.Python在数据科学和机器学习领域可能薪资更高。2.JavaScript在前端和全栈开发中需求大,薪资也可观。3.影响因素包括经验、地理位置、公司规模和特定技能。

实现视差滚动和元素动画效果的探讨本文将探讨如何实现类似资生堂官网(https://www.shiseido.co.jp/sb/wonderland/)中�...

学习JavaScript不难,但有挑战。1)理解基础概念如变量、数据类型、函数等。2)掌握异步编程,通过事件循环实现。3)使用DOM操作和Promise处理异步请求。4)避免常见错误,使用调试技巧。5)优化性能,遵循最佳实践。

JavaScript的最新趋势包括TypeScript的崛起、现代框架和库的流行以及WebAssembly的应用。未来前景涵盖更强大的类型系统、服务器端JavaScript的发展、人工智能和机器学习的扩展以及物联网和边缘计算的潜力。

如何在JavaScript中将具有相同ID的数组元素合并到一个对象中?在处理数据时,我们常常会遇到需要将具有相同ID�...

探索前端中类似VSCode的面板拖拽调整功能的实现在前端开发中,如何实现类似于VSCode...
