JavaScript 机器学习入门:TensorFlow.js 初学者指南
机器学习 (ML) 迅速改变了软件开发的世界。直到最近,得益于 TensorFlow 和 PyTorch 等库,Python 仍是 ML 领域的主导语言。但随着 TensorFlow.js 的兴起,JavaScript 开发人员现在可以深入令人兴奋的机器学习世界,使用熟悉的语法直接在浏览器或 Node.js 上构建和训练模型。
在这篇博文中,我们将探索如何开始使用 JavaScript 进行机器学习。我们将演练使用 TensorFlow.js.
构建和训练简单模型的示例为什么选择 TensorFlow.js?
TensorFlow.js 是一个开源库,可让您完全用 JavaScript 定义、训练和运行机器学习模型。它既可以在浏览器中运行,也可以在 Node.js 上运行,这使得它对于各种 ML 应用程序具有难以置信的多功能性。
以下是 TensorFlow.js 令人兴奋的几个原因:
- 实时训练:您可以直接在浏览器中运行模型,提供实时交互。
- 跨平台:相同的代码可以在服务器和客户端环境上运行。
- 硬件加速:它使用WebGL进行GPU加速,从而加快计算速度。
让我们看看如何开始!
1. 设置 TensorFlow.js
在深入研究代码之前,您需要安装TensorFlow.js。您可以通过 <script> 将其包含在您的项目中tag 或 npm,具体取决于您的环境。</script>
浏览器设置
要在浏览器中使用 TensorFlow.js,只需包含以下 <script> 即可: HTML 文件中的标签:<br> </script>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></script>
Node.js 设置
对于 Node.js 环境,您可以使用 npm 安装它:
npm install @tensorflow/tfjs
2. 构建简单的神经网络模型
让我们创建一个简单的神经网络来预测基本线性函数 y = 2x - 1 的输出。我们将使用 TensorFlow.js 来创建和训练该模型。
第 1 步:定义模型
我们首先定义一个具有一个密集层的顺序模型(线性堆栈):
// Import TensorFlow.js import * as tf from '@tensorflow/tfjs'; // Create a simple sequential model const model = tf.sequential(); // Add a single dense layer with 1 unit (neuron) model.add(tf.layers.dense({units: 1, inputShape: [1]}));
在这里,我们创建了一个具有一层致密层的模型。该层有一个神经元(单位:1),并且需要一个输入特征(inputShape:[1])。
第 2 步:编译模型
接下来,我们通过指定优化器和损失函数来编译模型:
// Compile the model model.compile({ optimizer: 'sgd', // Stochastic Gradient Descent loss: 'meanSquaredError' // Loss function for regression });
我们使用随机梯度下降(SGD)优化器,这对于小模型非常有效。损失函数meanSquaredError适用于像这样的回归任务。
第 3 步:准备训练数据
我们现在将为函数 y = 2x - 1 创建一些训练数据。在 TensorFlow.js 中,数据存储在张量(多维数组)中。以下是我们生成一些训练数据的方法:
// Generate some synthetic data for training const xs = tf.tensor2d([0, 1, 2, 3, 4], [5, 1]); // Inputs (x values) const ys = tf.tensor2d([1, 3, 5, 7, 9], [5, 1]); // Outputs (y values)
在本例中,我们创建了一个具有输入值 (0, 1, 2, 3, 4) 的张量 xs 和一个相应的输出张量 ys,其值使用 y = 2x - 1 计算得出。
第 4 步:训练模型
现在,我们可以根据我们的数据训练模型:
// Train the model model.fit(xs, ys, {epochs: 500}).then(() => { // Once training is complete, use the model to make predictions model.predict(tf.tensor2d([5], [1, 1])).print(); // Output will be close to 2*5 - 1 = 9 });
在这里,我们训练模型 500 个时期(训练数据的迭代)。训练后,我们使用模型来预测输入值为 5 的输出,这应该返回一个接近 9 的值 (y = 2*5 - 1 = 9)。
3. 在浏览器中运行模型
要在浏览器中运行此模型,您需要一个包含 TensorFlow.js 库和 JavaScript 代码的 HTML 文件:
TensorFlow.js Example <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></script>Simple Neural Network with TensorFlow.js
并且在您的 app.js 文件中,您可以包含上面的模型构建和训练代码。
以上是JavaScript 机器学习入门:TensorFlow.js 初学者指南的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

JavaScript是现代Web开发的基石,它的主要功能包括事件驱动编程、动态内容生成和异步编程。1)事件驱动编程允许网页根据用户操作动态变化。2)动态内容生成使得页面内容可以根据条件调整。3)异步编程确保用户界面不被阻塞。JavaScript广泛应用于网页交互、单页面应用和服务器端开发,极大地提升了用户体验和跨平台开发的灵活性。

Python和JavaScript开发者的薪资没有绝对的高低,具体取决于技能和行业需求。1.Python在数据科学和机器学习领域可能薪资更高。2.JavaScript在前端和全栈开发中需求大,薪资也可观。3.影响因素包括经验、地理位置、公司规模和特定技能。

如何在JavaScript中将具有相同ID的数组元素合并到一个对象中?在处理数据时,我们常常会遇到需要将具有相同ID�...

学习JavaScript不难,但有挑战。1)理解基础概念如变量、数据类型、函数等。2)掌握异步编程,通过事件循环实现。3)使用DOM操作和Promise处理异步请求。4)避免常见错误,使用调试技巧。5)优化性能,遵循最佳实践。

实现视差滚动和元素动画效果的探讨本文将探讨如何实现类似资生堂官网(https://www.shiseido.co.jp/sb/wonderland/)中�...

JavaScript的最新趋势包括TypeScript的崛起、现代框架和库的流行以及WebAssembly的应用。未来前景涵盖更强大的类型系统、服务器端JavaScript的发展、人工智能和机器学习的扩展以及物联网和边缘计算的潜力。

深入探讨console.log输出差异的根源本文将分析一段代码中console.log函数输出结果的差异,并解释其背后的原因。�...
