L'une des plus grandes difficultés pour ceux qui commencent à étudier l'apprentissage automatique est peut-être de travailler, de traiter les données, de faire de petites inférences, puis d'assembler votre modèle.
Dans cet article, je vais illustrer comment analyser un ensemble de données pour mieux construire un modèle de Machine Learning en passant par :
Mais commençons par le début, pour pouvoir contextualiser, qu'est-ce que le Machine Learning (ML) ?
Le ML est l'une des différentes branches de l'intelligence artificielle (IA), au même titre que les réseaux de neurones ou la robotique, et autres. Le type d'apprentissage automatique dépend de la façon dont les données sont structurées, elles peuvent donc être divisées en différents types, créant ainsi un modèle. Un modèle ML est créé à l'aide d'algorithmes qui traitent les données d'entrée et apprennent à prédire ou à classer les résultats.
Pour créer un modèle ML, nous avons besoin d'un ensemble de données, dans l'ensemble de données il doit y avoir nos fonctionnalités d'entrée, qui sont essentiellement l'intégralité de notre ensemble de données à l'exception de la colonne cible en fonction de notre type d'apprentissage, s'il s'agit d'un apprentissage supervisé, l'ensemble de données doit contenir les cibles, ou les étiquettes, ou les réponses correctes, car ces informations seront utilisées pour entraîner et tester le modèle.
Quelques types d'apprentissage et la structure de l'ensemble de données correspondant :
Par conséquent, l'ensemble de données définit essentiellement l'ensemble du comportement et du processus d'apprentissage du modèle généré par la machine.
Pour continuer avec les exemples, j'utiliserai un ensemble de données avec des étiquettes, illustrant un modèle avec Supervised Learning, où l'objectif sera de définir la valeur mensuelle de l'assurance-vie pour un public spécifique.
Commençons par charger notre ensemble de données et voyons ses premières lignes.
import pandas as pd data = pd.read_csv('../dataset_seguro_vida.csv') data.head()
Détaillons un peu plus nos données, nous pouvons voir son format, et découvrir le nombre de lignes et de colonnes dans l'ensemble de données.
data.shape
Nous avons ici une structure de données de 500 lignes et 9 colonnes.
Voyons maintenant de quels types de données nous disposons et s'il nous manque des données.
data.info()
Nous avons ici 3 colonnes numériques, dont 2 int (nombres entiers) et 1 float (nombres avec décimales), et les 6 autres sont des objets. On peut donc passer un peu à l'étape suivante du traitement des données.
Une bonne étape vers l'amélioration de notre ensemble de données est de comprendre que certains types de données sont traités et même compris plus facilement par le modèle que d'autres. Par exemple, les données de type objet sont plus lourdes et même limitées à travailler, il est donc préférable de les transformer en catégorie, car cela nous permet d'avoir plusieurs gains depuis les performances jusqu'à l'efficacité dans l'utilisation de la mémoire (dans Dans le fin, on peut même améliorer cela en faisant une autre transformation, mais le moment venu j'expliquerai mieux).
object_columns = data.select_dtypes(include='object').columns for col in object_columns: data[col] = data[col].astype('category') data.dtypes
Como o nosso objetivo é conseguir estipular o valor da mensalidade de um seguro de vida, vamos dar uma olhada melhor nas nossas variáveis numéricas usando a transposição.
data.describe().T
Podemos aqui ver alguns detalhes e valores dos nossos inputs numéricos, como a média aritmética, o valor mínimo e máximo. Através desses dados podemos fazer a separação desses valores em grupos baseados em algum input de categoria, por gênero, se fuma ou não, entre outros, como demonstração vamos fazer a separação por sexo, para visualizar a media aritmética das colunas divididas por sexo.
value_based_on_sex = data.groupby("Sexo").mean("PrecoSeguro") value_based_on_sex
Como podemos ver que no nosso dataset os homens acabam pagando um preço maior de seguro (lembrando que esse dataset é fictício).
Podemos ter uma melhor visualização dos dados através do seaborn, é uma biblioteca construída com base no matplotlib usada especificamente para plotar gráficos estatísticos.
import seaborn as sns sns.set_style("whitegrid") sns.pairplot( data[["Idade", "Salario", "PrecoSeguro", "Sexo"]], hue = "Sexo", height = 3, palette = "Set1")
Aqui podemos visualizar a distribuição desses valores através dos gráficos ficando mais claro a separação do conjunto, com base no grupo que escolhemos, como um teste você pode tentar fazer um agrupamento diferente e ver como os gráficos vão ficar.
Vamos criar uma matriz de correlação, sendo essa uma outra forma de visualizar a relação das variáveis numéricas do dataset, com o auxilio visual de um heatmap.
numeric_data = data.select_dtypes(include=['float64', 'int64']) corr_matrix = numeric_data.corr() sns.heatmap(corr_matrix, annot= True)
Essa matriz transposta nos mostra quais variáveis numéricas influenciam mais no nosso modelo, é um pouco intuitivo quando você olha para a imagem, podemos observar que a idade é a que mais vai interferir no preço do seguro.
Basicamente essa matriz funciona assim:
Os valores variam entre -1 e 1:
1: Correlação perfeita positiva - Quando uma variável aumenta, a outra também aumenta proporcionalmente.
0: Nenhuma correlação - Não há relação linear entre as variáveis.
-1: Correlação perfeita negativa - Quando uma variável aumenta, a outra diminui proporcionalmente.
Lembra da transformada que fizemos de object para category nos dados, agora vem a outra melhoria comentada, com os dados que viraram category faremos mais uma transformada, dessa vez a ideia é transformar essa variáveis categóricas em representações numéricas, isso nos permitirá ter um ganho incrível com o desempenho do modelo já que ele entende muito melhor essas variáveis numéricas.
Conseguimos fazer isso facilmente com a lib do pandas, o que ele faz é criar nova colunas binarias para valores distintos, o pandas é uma biblioteca voltada principalmente para analise de dados e estrutura de dados, então ela já possui diversas funcionalidades que nos auxiliam nos processo de tratamento do dataset.
data = pd.get_dummies(data)
Pronto agora temos nossas novas colunas para as categorias.
Para a construção do melhor modelo, devemos saber qual o algoritmo ideal para o propósito da ML, na tabela seguinte vou deixar um resumo simplificado de como analisar seu problema e fazer a melhor escolha.
Olhando a tabela podemos ver que o problema que temos que resolver é o de regressão. Aqui vai mais uma dica, sempre comesse simples e vá incrementando seu e fazendo os ajustes necessários até os valores de previsibilidade do modelo ser satisfatório.
Para o nosso exemplo vamos montar um modelo de Regressão Linear, já que temos uma linearidade entre os nossos inputs e temos como target uma variável numérica.
Sabemos que a nossa variável target é a coluna PrecoSeguro , as outras são nossos inputs. Os inputs em estatísticas são chamadas de variável independente e o target de variável dependente, pelos nomes fica claro que a ideia é que o nosso target é uma variável que depende dos nosso inputs, se os inputs variam nosso target tem que vai variar também.
Vamos definir nosso y com o target
y = data["PrecoSeguro"] E para x vamos remover a coluna target e inserir todas as outras X = data.drop("PrecoSeguro", axis = 1)
Antes de montarmos o modelo, nosso dataset precisa ser dividido uma parte para teste e outra para o treino, para fazer isso vamos usar do scikit-learn o método train_test_split.
from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test=train_test_split( X,y, train_size = 0.80, random_state = 1)
Aqui dividimos o nosso dataset em 80% para treino e 20% para testes. Agora podemos montar o nosso modelo.
from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(X_train,y_train)
Modelo montado agora podemos avaliar seu desempenho
lr.score(X_test, y_test). lr.score(X_train, y_train)
Aqui podemos analisar a o coeficiente de determinação do nosso modelo para testes e para o treinamento.
Podemos usar um outro método para poder descobrir o desvio padrão do nosso modelo, e entender a estabilidade e a confiabilidade do desempenho do modelo para a amostra
<p>from sklearn.metrics import mean_squared_error<br> import math</p> <p>y_pred = lr.predict(X_test)<br> math.sqrt(mean_squared_error(y_test, y_pred))</p>
O valor perfeito do coeficiente de determinação é 1, quanto mais próximo desse valor, teoricamente melhor seria o nosso modelo, mas um ponto de atenção é basicamente impossível você conseguir um modelo perfeito, até mesmo algo acima de 0.95 é de se desconfiar.
Se você tiver trabalhando com dados reais e conseguir um valor desse é bom analisar o seu modelo, testar outras abordagens e até mesmo revisar seu dataset, pois seu modelo pode estar sofrendo um overfitting e por isso apresenta esse resultado quase que perfeitos.
Aqui como montamos um dataset com valores irreais e sem nenhum embasamento é normal termos esses valores quase que perfeitos.
Deixarei aqui um link para o github do código e dataset usados nesse post
以上是构建机器学习模型时的数据集的详细内容。更多信息请关注PHP中文网其他相关文章!