首页 后端开发 Python教程 使用 FastAPI 和 Pydantic 构建强大的组件

使用 FastAPI 和 Pydantic 构建强大的组件

Oct 07, 2024 pm 04:12 PM

Building Robust Components with FastAPI and Pydantic

利用定义明确的对象进行高效的数据验证

对象充当组件的入口和出口点,充当数据流的基本网关。为了创建健壮、可维护的组件,必须在这些对象中定义清晰、结构良好的字段。这确保了不同系统部分之间的数据完整性和可靠交互。就我个人而言,我更喜欢使用 Python 和 FastAPI 框架来开发现代的高性能 API。对于数据验证,Pydantic 是我选择的库,它与 FastAPI 无缝集成,以优雅地强制执行字段约束并保持整个系统的一致性。


from fastapi import FastAPI, HTTPException
from pydantic import BaseModel, EmailStr, Field, ValidationError, conint

# FastAPI instance
app = FastAPI()

# Pydantic model for request body validation
class User(BaseModel):
    name: str = Field(..., min_length=3, max_length=50, description="Name must be between 3 and 50 characters")
    age: conint(gt=0, le=120) = Field(..., description="Age must be between 1 and 120")  # Constrained integer type
    email: EmailStr = Field(..., description="Must be a valid email address")

# API route to handle user data submission
@app.post("/create-user/")
async def create_user(user: User):
    try:
        # If validation passes, this will run
        return {"message": f"User {user.name} created successfully!"}
    except ValidationError as e:
        # Catch and return validation errors
        raise HTTPException(status_code=400, detail=e.errors())

# Sample invalid data
invalid_data = {"name": "A", "age": -5, "email": "invalid_email"}

# Simulate calling the route with invalid data
@app.get("/test-invalid-data/")
async def test_invalid_data():
    try:
        user = User(**invalid_data)  # Validation will fail here
    except ValidationError as e:
        return {"error": e.errors()}

# Run the server using: uvicorn <filename>:app --reload


登录后复制

在此示例中,我们演示了 FastAPI 和 Pydantic 如何协同工作以有效处理数据验证。使用 Pydantic 的 BaseModel,我们定义传入请求数据的验证规则。例如,我们利用 EmailStr 自动验证电子邮件格式,从而简化了流程,而无需自定义正则表达式。同样,我们使用 conint(一种受约束的整数类型)来确保年龄落在从 1 到 120 的特定范围内。这种方法增强了可读性和安全性。

在示例代码中,用户模型由姓名、年龄和电子邮件等字段定义,每个字段都有其验证标准。当用户通过 /create-user/ 路由提交数据时,FastAPI 会自动根据这些规则验证输入。如果有效,则用户创建成功;如果没有,FastAPI 会引发 400 Bad Request 并包含详细的错误消息。这显着降低了处理不正确或恶意数据的风险,使 FastAPI 成为安全 API 开发的有力选择。

使用 Pydantic 进行自定义字段/模型验证

Pydantic v2 引入了模型级验证,允许您使用 @model_validator 装饰器验证彼此相关的多个字段。此验证在字段验证之后运行,对于确保满足字段之间的某些条件特别有用。例如,您可能想确认事件模型中的 start_date 发生在 end_date 之前:


from pydantic import BaseModel, model_validator
from datetime import date

class Event(BaseModel):
    name: str
    start_date: date
    end_date: date

    @model_validator(mode='after')
    def check_dates(cls, values):
        start, end = values.get('start_date'), values.get('end_date')
        if start and end and start >= end:
            raise ValueError('start_date must be before end_date')
        return values


登录后复制

在此示例中,@model_validator 检查 start_date 是否早于 end_date。如果不满足此条件,Pydantic 会引发验证错误。这种模型级验证有利于确保准确执行多个字段之间的关系。

Pydantic 中的自定义序列化

Pydantic 允许通过重写 dict() 或 json() 方法来自定义模型字段的序列化。当您想要在序列化期间修改输出格式或排除某些字段时,这非常有用。您还可以使用 @property 装饰器添加包含在序列化中但不属于模型原始数据一部分的计算字段。

下面是自定义序列化的示例,它修改了全名的返回方式,同时从序列化输出中排除密码字段:


from pydantic import BaseModel

class User(BaseModel):
    first_name: str
    last_name: str
    password: str

    # Custom serialization to return the full name
    @property
    def full_name(self):
        return f"{self.first_name} {self.last_name}"

    # Overriding dict() to exclude the password
    def dict(self, **kwargs):
        result = super().dict(**kwargs)
        result['full_name'] = self.full_name  # Add computed field
        result.pop('password', None)  # Remove password from serialization
        return result

# Example usage
user = User(first_name="John", last_name="Doe", password="secret123")
print(user.dict())


登录后复制

在此示例中,full_name 是一个计算属性,我们重写 dict() 方法以确保从输出中排除密码。像这样的自定义序列化提供了对模型数据如何在 API 或响应中公开的细粒度控制。

FastAPI 和 Pydantic 集成

Pydantic 与 FastAPI 无缝集成,为请求负载、查询参数和路径参数提供自动数据验证。当您在 FastAPI 端点中定义 Pydantic 模型时,FastAPI 会根据模型的规则自动处理传入数据的解析和验证。如果数据无效,FastAPI 将返回详细的 422 Unprocessable Entity 响应,并包含明确的错误消息。

这是一个简单的例子:


from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()

class User(BaseModel):
    username: str
    age: int

@app.post("/users/")
async def create_user(user: User):
    return {"message": f"User {user.username} created successfully!"}


登录后复制

在此示例中,当 POST 请求发送到 /users/ 时,FastAPI 使用 Pydantic 来验证传入的 JSON 数据。如果数据不符合用户模型(例如,缺少用户名或无效年龄),FastAPI 会自动返回错误响应,从而简化输入验证和错误处理。

概括

总之,利​​用 Pydantic 和 FastAPI 可以通过明确的验证确保数据完整性,从而增强您创建健壮、可维护的应用程序的能力。这种强大的组合简化了开发流程,同时提高了安全性和可靠性,使其成为构建现代 API 的首选。

参考

FastAPI 中的 Pydantic 功能
Pydantic V2 计划


以上是使用 FastAPI 和 Pydantic 构建强大的组件的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1664
14
CakePHP 教程
1423
52
Laravel 教程
1321
25
PHP教程
1269
29
C# 教程
1249
24
Python vs.C:申请和用例 Python vs.C:申请和用例 Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

Python:游戏,Guis等 Python:游戏,Guis等 Apr 13, 2025 am 12:14 AM

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python与C:学习曲线和易用性 Python与C:学习曲线和易用性 Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和时间:充分利用您的学习时间 Python和时间:充分利用您的学习时间 Apr 14, 2025 am 12:02 AM

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python:自动化,脚本和任务管理 Python:自动化,脚本和任务管理 Apr 16, 2025 am 12:14 AM

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python标准库的哪一部分是:列表或数组? Python标准库的哪一部分是:列表或数组? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

学习Python:2小时的每日学习是否足够? 学习Python:2小时的每日学习是否足够? Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

See all articles