首页 > 后端开发 > Python教程 > 使用 Pinata、OpenAI 和 Streamlit 与您的 PDF 聊天

使用 Pinata、OpenAI 和 Streamlit 与您的 PDF 聊天

DDD
发布: 2024-10-11 10:36:02
原创
1010 人浏览过

In this tutorial, we’ll build a simple chat interface that allows users to upload a PDF, retrieve its content using OpenAI’s API, and display the responses in a chat-like interface using Streamlit. We will also leverage @pinata to upload and store the PDF files.

Let's have a little glance at what we are building before moving forward:

Prerequisites :

  • Basic knowledge of Python
  • Pinata API key (for uploading PDFs)
  • OpenAI API key (for generating responses)
  • Streamlit installed (for building the UI)

Step 1: Project Setup

Start by creating a new Python project directory:

mkdir chat-with-pdf
cd chat-with-pdf
python3 -m venv venv
source venv/bin/activate
pip install streamlit openai requests PyPDF2
登录后复制

Now, create a .env file in the root of your project and add the following environment variables:

PINATA_API_KEY=<Your Pinata API Key>
PINATA_SECRET_API_KEY=<Your Pinata Secret Key>
OPENAI_API_KEY=<Your OpenAI API Key>
登录后复制

One have to manage OPENAI_API_KEY by own as it's paid.But let's go through the process of creating api keys in Pinita.

So, before proceeding further let us know what Pinata is why we are using it.

Chat with your PDF using Pinata,OpenAI and Streamlit

Pinata is a service that provides a platform for storing and managing files on IPFS (InterPlanetary File System), a decentralized and distributed file storage system.

  • Decentralized Storage: Pinata helps you store files on IPFS, a decentralized network.
  • Easy to Use: It provides user-friendly tools and APIs for file management.
  • File Availability: Pinata keeps your files accessible by "pinning" them on IPFS.
  • NFT Support: It's great for storing metadata for NFTs and Web3 apps.
  • Cost-Effective: Pinata can be a cheaper alternative to traditional cloud storage.

Let's create required tokens by signin:

Chat with your PDF using Pinata,OpenAI and Streamlit

Next step is to verify your registered email :

Chat with your PDF using Pinata,OpenAI and Streamlit

After verifying signin to generate api keys :

Chat with your PDF using Pinata,OpenAI and Streamlit

After that go to API Key Section and Create New API Keys:

Chat with your PDF using Pinata,OpenAI and Streamlit

Finally, keys are successfully generated.Please copy that keys and save it in your code editor.

Chat with your PDF using Pinata,OpenAI and Streamlit

OPENAI_API_KEY=<Your OpenAI API Key>
PINATA_API_KEY=dfc05775d0c8a1743247
PINATA_SECRET_API_KEY=a54a70cd227a85e68615a5682500d73e9a12cd211dfbf5e25179830dc8278efc

登录后复制

Step 2: PDF Upload using Pinata

We’ll use Pinata’s API to upload PDFs and get a hash (CID) for each file. Create a file named pinata_helper.py to handle the PDF upload.

import os  # Import the os module to interact with the operating system
import requests  # Import the requests library to make HTTP requests
from dotenv import load_dotenv  # Import load_dotenv to load environment variables from a .env file

# Load environment variables from the .env file
load_dotenv()

# Define the Pinata API URL for pinning files to IPFS
PINATA_API_URL = "https://api.pinata.cloud/pinning/pinFileToIPFS"

# Retrieve Pinata API keys from environment variables
PINATA_API_KEY = os.getenv("PINATA_API_KEY")
PINATA_SECRET_API_KEY = os.getenv("PINATA_SECRET_API_KEY")

def upload_pdf_to_pinata(file_path):
    """
    Uploads a PDF file to Pinata's IPFS service.

    Args:
        file_path (str): The path to the PDF file to be uploaded.

    Returns:
        str: The IPFS hash of the uploaded file if successful, None otherwise.
    """
    # Prepare headers for the API request with the Pinata API keys
    headers = {
        "pinata_api_key": PINATA_API_KEY,
        "pinata_secret_api_key": PINATA_SECRET_API_KEY
    }

    # Open the file in binary read mode
    with open(file_path, 'rb') as file:
        # Send a POST request to Pinata API to upload the file
        response = requests.post(PINATA_API_URL, files={'file': file}, headers=headers)

        # Check if the request was successful (status code 200)
        if response.status_code == 200:
            print("File uploaded successfully")  # Print success message
            # Return the IPFS hash from the response JSON
            return response.json()['IpfsHash']
        else:
            # Print an error message if the upload failed
            print(f"Error: {response.text}")
            return None  # Return None to indicate failure

登录后复制

Step 3: Setting up OpenAI
Next, we’ll create a function that uses the OpenAI API to interact with the text extracted from the PDF. We’ll leverage OpenAI’s gpt-4o or gpt-4o-mini model for chat responses.

Create a new file openai_helper.py:

import os
from openai import OpenAI
from dotenv import load_dotenv

# Load environment variables from .env file
load_dotenv()

# Initialize OpenAI client with the API key
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=OPENAI_API_KEY)

def get_openai_response(text, pdf_text):
    try:
        # Create the chat completion request
        print("User Input:", text)
        print("PDF Content:", pdf_text)  # Optional: for debugging

        # Combine the user's input and PDF content for context
        messages = [
            {"role": "system", "content": "You are a helpful assistant for answering questions about the PDF."},
            {"role": "user", "content": pdf_text},  # Providing the PDF content
            {"role": "user", "content": text}  # Providing the user question or request
        ]

        response = client.chat.completions.create(
            model="gpt-4",  # Use "gpt-4" or "gpt-4o mini" based on your access
            messages=messages,
            max_tokens=100,  # Adjust as necessary
            temperature=0.7  # Adjust to control response creativity
        )

        # Extract the content of the response
        return response.choices[0].message.content  # Corrected access method
    except Exception as e:
        return f"Error: {str(e)}"

登录后复制

Step 4: Building the Streamlit Interface

Now that we have our helper functions ready, it’s time to build the Streamlit app that will upload PDFs, fetch responses from OpenAI, and display the chat.

Create a file named app.py:

import streamlit as st
import os
import time
from pinata_helper import upload_pdf_to_pinata
from openai_helper import get_openai_response
from PyPDF2 import PdfReader
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

st.set_page_config(page_title="Chat with PDFs", layout="centered")

st.title("Chat with PDFs using OpenAI and Pinata")

uploaded_file = st.file_uploader("Upload your PDF", type="pdf")

# Initialize session state for chat history and loading state
if "chat_history" not in st.session_state:
    st.session_state.chat_history = []
if "loading" not in st.session_state:
    st.session_state.loading = False

if uploaded_file is not None:
    # Save the uploaded file temporarily
    file_path = os.path.join("temp", uploaded_file.name)
    with open(file_path, "wb") as f:
        f.write(uploaded_file.getbuffer())

    # Upload PDF to Pinata
    st.write("Uploading PDF to Pinata...")
    pdf_cid = upload_pdf_to_pinata(file_path)

    if pdf_cid:
        st.write(f"File uploaded to IPFS with CID: {pdf_cid}")

        # Extract PDF content
        reader = PdfReader(file_path)
        pdf_text = ""
        for page in reader.pages:
            pdf_text += page.extract_text()

        if pdf_text:
            st.text_area("PDF Content", pdf_text, height=200)

            # Allow user to ask questions about the PDF
            user_input = st.text_input("Ask something about the PDF:", disabled=st.session_state.loading)

            if st.button("Send", disabled=st.session_state.loading):
                if user_input:
                    # Set loading state to True
                    st.session_state.loading = True

                    # Display loading indicator
                    with st.spinner("AI is thinking..."):
                        # Simulate loading with sleep (remove in production)
                        time.sleep(1)  # Simulate network delay
                        # Get AI response
                        response = get_openai_response(user_input, pdf_text)

                    # Update chat history
                    st.session_state.chat_history.append({"user": user_input, "ai": response})

                    # Clear the input box after sending
                    st.session_state.input_text = ""

                    # Reset loading state
                    st.session_state.loading = False

            # Display chat history
            if st.session_state.chat_history:
                for chat in st.session_state.chat_history:
                    st.write(f"**You:** {chat['user']}")
                    st.write(f"**AI:** {chat['ai']}")

                # Auto-scroll to the bottom of the chat
                st.write("<style>div.stChat {overflow-y: auto;}</style>", unsafe_allow_html=True)

                # Add three dots as a loading indicator if still waiting for response
                if st.session_state.loading:
                    st.write("**AI is typing** ...")

        else:
            st.error("Could not extract text from the PDF.")
    else:
        st.error("Failed to upload PDF to Pinata.")

登录后复制

Step 5: Running the App

To run the app locally, use the following command:

streamlit run app.py
登录后复制

Our file is successfully uploaded in Pinata Platform :
Chat with your PDF using Pinata,OpenAI and Streamlit

Step 6: Explaining the Code

Pinata Upload

  • The user uploads a PDF file, which is temporarily saved locally and uploaded to Pinata using the upload_pdf_to_pinata function. Pinata returns a hash (CID), which represents the file stored on IPFS.

PDF Extraction

  • Setelah fail dimuat naik, kandungan PDF diekstrak menggunakan PyPDF2. Teks ini kemudiannya dipaparkan dalam kawasan teks.

Interaksi OpenAI

  • Pengguna boleh bertanya soalan tentang kandungan PDF menggunakan input teks. Fungsi get_openai_response menghantar pertanyaan pengguna bersama kandungan PDF ke OpenAI, yang mengembalikan respons yang berkaitan.

Kod akhir tersedia dalam repo github ini :
https://github.com/Jagroop2001/chat-with-pdf

Itu sahaja untuk blog ini! Nantikan lebih banyak kemas kini dan teruskan membina apl yang menakjubkan! ?✨
Selamat mengekod! ?

以上是使用 Pinata、OpenAI 和 Streamlit 与您的 PDF 聊天的详细内容。更多信息请关注PHP中文网其他相关文章!

来源:dev.to
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板