首页 > 后端开发 > Python教程 > 使用 Python 和 OpenCV 实现边缘检测:分步指南

使用 Python 和 OpenCV 实现边缘检测:分步指南

DDD
发布: 2024-10-20 06:10:02
原创
1019 人浏览过

介绍

边缘检测是计算机视觉的基础,使我们能够识别图像中的对象边界。在本教程中,我们将使用 Sobel 算子和 Canny 边缘检测器以及 Python 和 OpenCV 来实现边缘检测。然后,我们将使用 Flask 创建一个简单的 Web 应用程序,并使用 Bootstrap 进行样式设计,以允许用户上传图像并查看结果。

演示链接:边缘检测演示

先决条件

  • 您的计算机上已安装 Python 3.x。
  • Python 编程基础知识。
  • 熟悉 HTML 和 CSS 会有所帮助,但不是必需的。

设置环境

1.安装所需的库

打开终端或命令提示符并运行:

pip install opencv-python numpy Flask
登录后复制

2.创建项目目录

mkdir edge_detection_app
cd edge_detection_app
登录后复制

实施边缘检测

1. 索贝尔算子

Sobel 算子计算图像强度的梯度,强调边缘。

代码实现:

import cv2

# Load the image in grayscale
image = cv2.imread('input_image.jpg', cv2.IMREAD_GRAYSCALE)
if image is None:
    print("Error loading image")
    exit()

# Apply Sobel operator
sobelx = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=5)  # Horizontal edges
sobely = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=5)  # Vertical edges
登录后复制

2. Canny 边缘检测器

Canny 边缘检测器是一种用于检测边缘的多级算法。

代码实现:

# Apply Canny edge detector
edges = cv2.Canny(image, threshold1=100, threshold2=200)
登录后复制

创建 Flask Web 应用程序

1. 设置 Flask 应用程序

创建一个名为app.py的文件:

from flask import Flask, request, render_template, redirect, url_for
import cv2
import os

app = Flask(__name__)

UPLOAD_FOLDER = 'static/uploads/'
OUTPUT_FOLDER = 'static/outputs/'

app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
app.config['OUTPUT_FOLDER'] = OUTPUT_FOLDER

# Create directories if they don't exist
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(OUTPUT_FOLDER, exist_ok=True)
登录后复制

2. 定义路线

上传路线:

@app.route('/', methods=['GET', 'POST'])
def upload_image():
    if request.method == 'POST':
        file = request.files.get('file')
        if not file or file.filename == '':
            return 'No file selected', 400
        filepath = os.path.join(app.config['UPLOAD_FOLDER'], file.filename)
        file.save(filepath)
        process_image(file.filename)
        return redirect(url_for('display_result', filename=file.filename))
    return render_template('upload.html')
登录后复制

处理图像函数:

def process_image(filename):
    image_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
    image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)

    # Apply edge detection
    sobelx = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=5)
    edges = cv2.Canny(image, 100, 200)

    # Save outputs
    cv2.imwrite(os.path.join(app.config['OUTPUT_FOLDER'], 'sobelx_' + filename), sobelx)
    cv2.imwrite(os.path.join(app.config['OUTPUT_FOLDER'], 'edges_' + filename), edges)
登录后复制

结果路线:

@app.route('/result/<filename>')
def display_result(filename):
    return render_template('result.html',
                           original_image='uploads/' + filename,
                           sobelx_image='outputs/sobelx_' + filename,
                           edges_image='outputs/edges_' + filename)
登录后复制

3. 运行应用程序

if __name__ == '__main__':
    app.run(debug=True)
登录后复制

使用 Bootstrap 设计 Web 应用程序的样式

在 HTML 模板中包含 Bootstrap CDN 以进行样式设置。

1.上传.html

创建templates目录并添加upload.html:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>Edge Detection App</title>
    <!-- Bootstrap CSS CDN -->
    <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.5.2/css/bootstrap.min.css">
</head>
<body>
    <div class="container mt-5">
        <h1 class="text-center mb-4">Upload an Image for Edge Detection</h1>
        <div class="row justify-content-center">
            <div class="col-md-6">
                <form method="post" enctype="multipart/form-data" class="border p-4">
                    <div class="form-group">
                        <label for="file">Choose an image:</label>
                        <input type="file" name="file" accept="image/*" required class="form-control-file" id="file">
                    </div>
                    <button type="submit" class="btn btn-primary btn-block">Upload and Process</button>
                </form>
            </div>
        </div>
    </div>
</body>
</html>
登录后复制

2.结果.html

在templates目录下创建result.html:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>Edge Detection Results</title>
    <!-- Bootstrap CSS CDN -->
    <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.5.2/css/bootstrap.min.css">
</head>
<body>
    <div class="container mt-5">
        <h1 class="text-center mb-5">Edge Detection Results</h1>
        <div class="row">
            <div class="col-md-6 mb-4">
                <h4 class="text-center">Original Image</h4>
                <img src="{{ url_for('static', filename=original_image) }}" alt="Original Image" class="img-fluid rounded mx-auto d-block">
            </div>
            <div class="col-md-6 mb-4">
                <h4 class="text-center">Sobel X</h4>
                <img src="{{ url_for('static', filename=sobelx_image) }}" alt="Sobel X" class="img-fluid rounded mx-auto d-block">
            </div>
            <div class="col-md-6 mb-4">
                <h4 class="text-center">Canny Edges</h4>
                <img src="{{ url_for('static', filename=edges_image) }}" alt="Canny Edges" class="img-fluid rounded mx-auto d-block">
            </div>
        </div>
        <div class="text-center mt-4">
            <a href="{{ url_for('upload_image') }}" class="btn btn-secondary">Process Another Image</a>
        </div>
    </div>
</body>
</html>
登录后复制

运行和测试应用程序

1. 运行 Flask 应用程序

python app.py
登录后复制

2. 访问应用程序

打开网络浏览器并导航至 http://localhost:5000。

  • 上传图像并单击“上传并处理”。
  • 查看边缘检测结果。

结果示例

Implementing Edge Detection with Python and OpenCV: A Step-by-Step Guide

结论

我们构建了一个简单的 Web 应用程序,使用 Sobel 算子和 Canny 边缘检测器执行边缘检测。通过集成 Python、OpenCV、Flask 和 Bootstrap,我们创建了一个交互式工具,允许用户上传图像并查看边缘检测结果。

后续步骤

  • 增强应用程序:添加更多边缘检测选项或允许参数调整。
  • 改进UI:融入更多Bootstrap组件,提供更好的用户体验。
  • 进一步探索:在 Heroku 或 AWS 等其他平台上部署应用程序。

GitHub 存储库:边缘检测应用

以上是使用 Python 和 OpenCV 实现边缘检测:分步指南的详细内容。更多信息请关注PHP中文网其他相关文章!

来源:dev.to
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板