目录
多条件高效过滤 Pandas DataFrame 或 Series
首页 后端开发 Python教程 如何高效过滤具有多个条件的 Pandas DataFrame 或 Series?

如何高效过滤具有多个条件的 Pandas DataFrame 或 Series?

Oct 20, 2024 am 11:56 AM

How to Efficiently Filter Pandas DataFrame or Series with Multiple Conditions?

多条件高效过滤 Pandas DataFrame 或 Series

Pandas 提供了多种过滤数据的方法,包括 reindex()、apply() 和 map() 。然而,当应用多个过滤器时,效率就成为一个问题。

为了优化过滤,请考虑使用布尔索引。 Pandas 和 Numpy 都支持布尔索引,它直接对底层数据数组进行操作,而不会创建不必要的副本。

以下是布尔索引的示例:

<code class="python">df.loc[df['col1'] >= 1, 'col1']</code>
登录后复制

此表达式返回包含以下内容的 Pandas Series:仅列“col1”中的值大于或等于 1 的行。

要应用多个过滤器,请使用逻辑运算符“&”(AND)和“|” (或者)。例如:

<code class="python">df[(df['col1'] >= 1) &amp; (df['col1'] <=1 )]</code>
登录后复制

此表达式返回一个 DataFrame,仅包含列“col1”中的值在 1 和 1 之间(含 1 和 1)的行。

对于辅助函数,请考虑定义以下函数:获取一个 DataFrame 并返回一个布尔系列,允许您使用逻辑运算符组合多个过滤器。

<code class="python">def b(x, col, op, n):
    return op(x[col],n)

def f(x, *b):
    return x[(np.logical_and(*b))]</code>
登录后复制

Pandas 0.13 引入了 query() 方法,该方法提供了一种更有效的方式来表达复杂的过滤条件。假设有效的列标识符,以下代码根据多个条件过滤 DataFrame df:

<code class="python">df.query('col1 <= 1 &amp; 1 <= col1')</code>
登录后复制

总之,布尔索引提供了一种有效的方法,可以将多个过滤器应用于 Pandas DataFrame 或 Series,而无需创建不必要的副本。使用逻辑运算符和辅助函数组合多个过滤器以实现扩展功能。

以上是如何高效过滤具有多个条件的 Pandas DataFrame 或 Series?的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

如何解决Linux终端中查看Python版本时遇到的权限问题? 如何解决Linux终端中查看Python版本时遇到的权限问题? Apr 01, 2025 pm 05:09 PM

Linux终端中查看Python版本时遇到权限问题的解决方法当你在Linux终端中尝试查看Python的版本时,输入python...

如何在使用 Fiddler Everywhere 进行中间人读取时避免被浏览器检测到? 如何在使用 Fiddler Everywhere 进行中间人读取时避免被浏览器检测到? Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

在Python中如何高效地将一个DataFrame的整列复制到另一个结构不同的DataFrame中? 在Python中如何高效地将一个DataFrame的整列复制到另一个结构不同的DataFrame中? Apr 01, 2025 pm 11:15 PM

在使用Python的pandas库时,如何在两个结构不同的DataFrame之间进行整列复制是一个常见的问题。假设我们有两个Dat...

如何在10小时内通过项目和问题驱动的方式教计算机小白编程基础? 如何在10小时内通过项目和问题驱动的方式教计算机小白编程基础? Apr 02, 2025 am 07:18 AM

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

Uvicorn是如何在没有serve_forever()的情况下持续监听HTTP请求的? Uvicorn是如何在没有serve_forever()的情况下持续监听HTTP请求的? Apr 01, 2025 pm 10:51 PM

Uvicorn是如何持续监听HTTP请求的?Uvicorn是一个基于ASGI的轻量级Web服务器,其核心功能之一便是监听HTTP请求并进�...

在Linux终端中使用python --version命令时如何解决权限问题? 在Linux终端中使用python --version命令时如何解决权限问题? Apr 02, 2025 am 06:36 AM

Linux终端中使用python...

如何绕过Investing.com的反爬虫机制获取新闻数据? 如何绕过Investing.com的反爬虫机制获取新闻数据? Apr 02, 2025 am 07:03 AM

攻克Investing.com的反爬虫策略许多人尝试爬取Investing.com(https://cn.investing.com/news/latest-news)的新闻数据时,常常�...

See all articles