如何在 Python 中确定数据点的精确 y 轴交点?
查找数据点与 y 轴的精确交点
在 Python 中绘制数据时,获取曲线与 y 轴相交的精确值非常有用y 轴。该值可以使用数值方法确定,特别是通过线性插值。
使用线性插值的解决方案
以下代码演示了如何使用线性插值查找数据数组的零交叉点:
<code class="python">import numpy as np # Generate sample data N = 750 x = .4 + np.sort(np.random.rand(N)) * 3.5 y = (x - 4) * np.cos(x * 9.) * np.cos(x * 6 + 0.05) + 0.1 # Define function to find roots (zero crossings) def find_roots(x, y): s = np.abs(np.diff(np.sign(y))).astype(bool) return x[:-1][s] + np.diff(x)[s]/(np.abs(y[1:][s]/y[:-1][s])+1) # Find zero crossings z = find_roots(x, y) # Plot data and zero crossings import matplotlib.pyplot as plt plt.plot(x, y) plt.plot(z, np.zeros(len(z)), marker="o", ls="", ms=4) plt.show()</code>
非零 y 值截距的逆图
可以修改上述方法,通过查找 y 的零点来查找非零 y 值 (y0) 处的截距 - y0:
<code class="python">y0 = 1.4 z = find_roots(x, y - y0) plt.plot(z, np.zeros(len(z)) + y0)</code>
两条曲线之间的交点
与第一种方法类似,找到两条曲线之间的交点涉及到找到两个数据数组之间差异的零点:
<code class="python"># Generate sample data x = .4 + np.sort(np.random.rand(N)) * 3.5 y1 = (x - 4) * np.cos(x * 9.) * np.cos(x * 6 + 0.05) + 0.1 y2 = (x - 2) * np.cos(x * 8.) * np.cos(x * 5 + 0.03) + 0.3 # Find intersection points z = find_roots(x, y2 - y1) # Plot data and intersection points plt.plot(x, y1) plt.plot(x, y2, color="C2") plt.plot(z, np.interp(z, x, y1), marker="o", ls="", ms=4, color="C1")</code>
以上是如何在 Python 中确定数据点的精确 y 轴交点?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优
