OpenRAG:一款开源 GenAI 应用程序,可通过大型语言模型增强数据查询
在人工智能时代,企业和开发人员越来越多地利用大型语言模型 (LLM) 来简化数据分析和客户交互。 OpenRAG 是一款开源生成人工智能 (GenAI) 应用程序,通过将法学硕士的灵活性与跨各种向量数据库的高效数据查询功能相结合,为用户提供支持。无论您是处理 PDF、查询大型数据集还是从存储的数据中寻求见解,OpenRAG 都可以使用自然语言查询与您的数据无缝交互。
OpenRAG 的主要特性
支持所有开源 LLM 模型 OpenRAG 旨在与各种开源 LLM 集成,让用户可以自由选择最适合其独特用例的模型。该平台的可扩展性允许未来扩展,确保用户可以不受任何限制地利用人工智能领域的最新进展。
多个开源矢量数据库集成 OpenRAG 已预先配置为支持流行的开源矢量数据库,例如 Chroma、FAISS 和 Qdrant。这些数据库有助于高性能矢量搜索和检索,确保用户在查询数据时获得精确的结果。
PDF 上传和数据查询OpenRAG 的一项突出功能是能够上传 PDF 文件并将其转换为结构化数据集合。这使得该应用程序对于处理大量基于 PDF 的信息的专业人员非常有用。上传 PDF 后,用户可以使用自己选择的法学硕士查询内容,快速有效地提取见解。
持久集合名称以实现可重用性 OpenRAG 为上传的 PDF 分配唯一的集合名称,允许用户返回和查询数据,而无需重新上传相同的文件。此功能可以节省时间并使数据管理更加无缝。
矢量数据库的一致性 用法 OpenRAG 通过将数据集合绑定到特定的矢量数据库来保持一致性。一旦选择采集后,用户就无法切换数据库,保证每次数据检索稳定准确。
OpenRAG 入门
在深入人工智能驱动的数据查询世界之前,请确保满足以下先决条件才能顺利安装:
先决条件
Python 版本: 确保您安装了 Python 3.9 或更高版本。
Qdrant Docker 映像: OpenRAG 与 Qdrant 集成,并且该映像应该正在运行。确保本地主机上的端口 6333 可以访问。
安装
- 克隆存储库:
git 克隆 https://github.com/yourrepo/openrag.git
- 创建虚拟环境:
python3 -m venv openrag-env source openrag-env/bin/activate
- 安装依赖项:
pip install -r requests.txt
- 下载 Spacy 语言模型:
python3 -m spacy download en_core_web_sm
- 运行应用程序:
uvicorn main:app --reload
Docker化以方便部署
对于喜欢使用 Docker 进行部署的开发人员,OpenRAG 可以容器化:
- 构建 Docker 镜像:
docker build -t openrag-app .
- 运行容器:
docker run -d -p 8000:8000 openrag-app
应用程序运行后,通过浏览器中的 http://localhost:8000 访问它。
用法:通过 API 与 OpenRAG 交互
OpenRAG 的 API 优先架构使其能够集成到各种前端应用程序中。以下是如何上传 PDF 并通过 API 查询其内容的示例:
上传 PDF
curl -X POST "http://localhost:8000/upload" \ -H "accept: application/json" \ -H "Content-Type: multipart/form-data" \ -F "file=@yourfile.pdf" \ -F "model_name=GPT-3.5" \ -F "vector_db_name=qdrant"
开始聊天会话
上传 PDF 后,您可以发起基于聊天的查询:
curl -X POST "http://localhost:8000/chat" \ -H "Content-Type: application/json" \ -d '{ "collection_name": "your_collection_name", "query": "your_query", "model_name": "GPT-3.5", "vector_db_name": "qdrant", "device": "cpu" }'
OpenRAG 的可扩展性
OpenRAG 的最大优势之一是其可扩展性。虽然它可以使用 uvicorn 等工具在本地计算机上运行,但它已做好生产准备,并且可以使用云提供商、Docker 或 Kubernetes 进行部署。在生产环境中,OpenRAG 支持通过 Gunicorn 等工具进行扩展,为高流量用例提供强大的性能。
常见错误及解决方案
用户在开发过程中可能会遇到以下常见错误:
类型错误:无法直接创建描述符。
要解决此问题,请考虑将 protobuf 包降级到版本 3.20.x 或更低版本,或者设置环境变量
PROTOCOL_BUFFERS_PYTHON_IMPLMENTATION=python
结论
对于希望利用法学硕士和矢量数据库的强大功能进行数据查询和洞察的用户来说,OpenRAG 是一种灵活的开源解决方案。无论您是开发人员、研究人员还是企业用户,OpenRAG 都提供了以高效且直观的方式处理您的数据的工具。
有关详细的 API 文档和更多示例,请访问 OpenRAG 的 API 文档。
为 OpenRAG 做出贡献
我们欢迎社区的贡献!有关如何贡献、提交问题或请求功能的详细信息,请查看 CONTRIBUTING.md。
Github 存储库链接
打开 Rag Repo
以上是OpenRAG:一款开源 GenAI 应用程序,可通过大型语言模型增强数据查询的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。
