首页 > 后端开发 > Python教程 > 只读数据在多处理环境中共享或复制吗?

只读数据在多处理环境中共享或复制吗?

Barbara Streisand
发布: 2024-10-24 13:44:02
原创
557 人浏览过

Is Readonly Data Shared or Copied in Multiprocessing Environments?

在多处理中共享只读数据:复制还是共享?

在多处理环境中,数据共享对于性能优化至关重要。出现一个常见问题:只读数据是否在不同进程之间共享或复制?

提供的代码片段强调了有关将大型全局数组 (glbl_array) 传递到多处理池中的多个工作进程的问题。如果数组被共享或复制,就会出现问题,可能会导致大量内存开销。

使用 Numpy 和共享内存进行数据共享

确保共享访问为只读data,答案中提到的一种方法是利用多处理的共享内存以及 Numpy。操作方法如下:

<code class="python">import multiprocessing
import ctypes
import numpy as np

shared_array_base = multiprocessing.Array(ctypes.c_double, 10*10)
shared_array = np.ctypeslib.as_array(shared_array_base.get_obj())
shared_array = shared_array.reshape(10, 10)</code>
登录后复制

此代码使用多处理包创建共享内存对象 (shared_array_base),并将其转换为 Numpy 数组 (shared_array)。后续在工作进程中使用shared_array将会对共享内存进行操作,避免不必要的数据复制。

Linux中的Copy-on-Write语义

另外,值得注意的是Linux 在 fork() 上使用写时复制语义。这意味着即使不使用显式共享内存技术,只读数据也只会在修改时才会被复制。因此,只要数组保持不变,它就会被共享,而不会产生任何复制开销。

结论

多处理中只读数据是共享还是复制取决于具体实施。将 Numpy 与共享内存结合使用提供了一种确保数据共享的可靠方法,而 Linux 的写时复制语义也可能有助于避免不必要的复制。通过仔细考虑这些因素,程序员可以优化其多处理应用程序以实现高效的数据共享。

以上是只读数据在多处理环境中共享或复制吗?的详细内容。更多信息请关注PHP中文网其他相关文章!

来源:php
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
作者最新文章
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板