如何从 Pandas 数据框列中提取元组
问题:
在 Pandas 数据框中,包含元组的列是很常见的。然而,使用这些元组可能很麻烦。为了便于分析,通常需要将这些列拆分为包含各个元组元素的多个列。
解决方案:
将一列元组转换为单独的列,按照以下步骤操作:
使用 tolist() 方法将列转换为元组列表:
<code class="python">column_list = column.tolist()</code>
创建一个新的元组列表中的数据框:
<code class="python">new_df = pd.DataFrame(column_list, index=dataframe.index)</code>
将新数据框作为新列分配给原始数据框:
<code class="python">dataframe[['column_a', 'column_b']] = new_df[['0', '1']]</code>
示例:
考虑以下数据框:
<code class="python">>>> d1 y norm test y norm train len(y_train) len(y_test) \ 0 64.904368 116.151232 1645 549 1 70.852681 112.639876 1645 549 SVR RBF \ 0 (35.652207342877873, 22.95533537448393) 1 (39.563683797747622, 27.382483096332511) LCV \ 0 (19.365430594452338, 13.880062435173587) 1 (19.099614489458364, 14.018867136617146) RIDGE CV \ 0 (4.2907610988480362, 12.416745648065584) 1 (4.18864306788194, 12.980833914392477) RF \ 0 (9.9484841581029428, 16.46902345373697) 1 (10.139848213735391, 16.282141345406522) GB \ 0 (0.012816232716538605, 15.950164822266007) 1 (0.012814519804493328, 15.305745202851712) ET DATA 0 (0.00034337162272515505, 16.284800366214057) j2m 1 (0.00024811554516431878, 15.556506191784194) j2m >>></code>
要将 LCV 列拆分为单独的列 LCV-a 和 LCV-b,您可以使用以下代码:
<code class="python">df[['LCV-a', 'LCV-b']] = pd.DataFrame(df['LCV'].tolist(), index=df.index)</code>
生成的数据框将是:
<code class="python">>>> df y norm test y norm train len(y_train) len(y_test) \ 0 64.904368 116.151232 1645 549 1 70.852681 112.639876 1645 549 SVR RBF \ 0 (35.652207342877873, 22.95533537448393) 1 (39.563683797747622, 27.382483096332511) LCV-a LCV-b \ 0 19.365430594452338 13.880062435173587 1 19.099614489458364 14.018867136617146 RIDGE CV \ 0 (4.2907610988480362, 12.416745648065584) 1 (4.18864306788194, 12.980833914392477) RF \ 0 (9.9484841581029428, 16.46902345373697) 1 (10.139848213735391, 16.282141345406522) GB \ 0 (0.012816232716538605, 15.950164822266007) 1 (0.012814519804493328, 15.305745202851712) ET DATA 0 (0.00034337162272515505, 16.284800366214057) j2m 1 (0.00024811554516431878, 15.556506191784194) j2m</code>
以上是如何将 Pandas 数据框中的一列元组拆分为单独的列?的详细内容。更多信息请关注PHP中文网其他相关文章!