首页 后端开发 Python教程 如何使用多个条件过滤 Numpy 数组:为什么 `np.where()` 失败以及如何获得正确的结果?

如何使用多个条件过滤 Numpy 数组:为什么 `np.where()` 失败以及如何获得正确的结果?

Oct 26, 2024 am 10:27 AM

 How to Filter Numpy Arrays with Multiple Conditions: Why `np.where()` Fails and How to Achieve Correct Results?

具有多个条件的 numpy where 函数

在 numpy 中,where 函数允许根据条件过滤数组。但是,当尝试使用 & 和 | 等逻辑运算符应用多个条件时,可能会出现意外结果。

请考虑以下代码:

import numpy as np

dists = np.arange(0, 100, 0.5)
r = 50
dr = 10

# Attempt to select distances within a range
result = dists[(np.where(dists >= r)) and (np.where(dists <= r + dr))]
登录后复制

此代码尝试选择 r 和 r 之间的距离r博士。但是,它只选择满足第二个条件的距离,dists <= r dr.

失败原因:

numpy where 函数返回以下元素的索引:满足条件,而不是布尔数组。使用逻辑运算符组合多个 where 语句时,输出是满足各自条件的索引列表。对这些列表执行 and 运算会产生第二组索引,从而有效地忽略第一个条件。

正确方法:

  • 元素-明智比较:

要应用多个条件,请直接使用逐元素比较:

dists[(dists >= r) & (dists <= r + dr)]
登录后复制
  • 布尔数组:

或者,为每个条件创建布尔数组并对它们执行逻辑运算:

condition1 = dists >= r
condition2 = dists <= r + dr
result = dists[condition1 & condition2]
登录后复制
  • 花式索引:

花哨的索引还允许条件过滤:

result = dists[(condition1) & (condition2)]
登录后复制

在某些情况下,将条件简化为单个标准可能会更有利,如下例所示:

result = dists[abs(dists - r - dr/2.) <= dr/2.]
登录后复制

通过了解了 where 函数的行为,程序员可以在 numpy 中根据多个条件有效地过滤数组。

以上是如何使用多个条件过滤 Numpy 数组:为什么 `np.where()` 失败以及如何获得正确的结果?的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1671
14
CakePHP 教程
1428
52
Laravel 教程
1332
25
PHP教程
1276
29
C# 教程
1256
24
Python与C:学习曲线和易用性 Python与C:学习曲线和易用性 Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和时间:充分利用您的学习时间 Python和时间:充分利用您的学习时间 Apr 14, 2025 am 12:02 AM

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

学习Python:2小时的每日学习是否足够? 学习Python:2小时的每日学习是否足够? Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python vs. C:了解关键差异 Python vs. C:了解关键差异 Apr 21, 2025 am 12:18 AM

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

Python标准库的哪一部分是:列表或数组? Python标准库的哪一部分是:列表或数组? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python:自动化,脚本和任务管理 Python:自动化,脚本和任务管理 Apr 16, 2025 am 12:14 AM

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

科学计算的Python:详细的外观 科学计算的Python:详细的外观 Apr 19, 2025 am 12:15 AM

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

See all articles