首页 后端开发 Python教程 Pandas Apply 与 NumPy Vectorize:哪个创建新列更快?

Pandas Apply 与 NumPy Vectorize:哪个创建新列更快?

Oct 27, 2024 am 08:28 AM

  Pandas Apply vs. NumPy Vectorize: Which is Faster for Creating New Columns?

Pandas Apply 与 NumPy Vectorize 在列创建中的性能

简介

而 Pandas ' df.apply() 是一个用于在数据帧上操作的多功能函数,它的性能可能是一个问题,特别是对于大型数据集。 NumPy 的 np.vectorize() 提供了一种潜在的替代方案,用于根据现有列创建新列。本文研究了两种方法之间的速度差异,解释了为什么 np.vectorize() 通常更快。

性能比较

广泛的基准测试表明 np.vectorize( )始终明显优于 df.apply()。例如,在具有 100 万行的数据集中,np.vectorize() 在 2016 款 MacBook Pro 上速度提高了 25 倍。随着数据集大小的增加,这种差异变得更加明显。

底层机制

df.apply() 通过一系列 Python 级别的循环进行操作,这引入了重要的开销。每次迭代都涉及创建一个新的 Pandas Series 对象、调用该函数并将结果附加到新列。相比之下,np.vectorize() 利用 NumPy 的广播规则来评估数组上的函数。这种方法绕过了 Python 循环的开销,并利用了优化的 C 代码,从而加快了执行速度。

真正的向量化

对于真正的向量化计算,df.apply 都不是() 和 np.vectorize() 都不是最佳的。相反,本机 NumPy 操作提供了卓越的性能。例如,矢量化的 diverge() 比 df.apply() 或 np.vectorize() 显示出显着的性能优势。

使用 Numba 进行 JIT 编译

For为了获得更高的效率,可以使用 Numba 的 @njit 装饰器将 divide() 函数编译为高效的 C 级代码。这种方法进一步减少了执行时间,以微秒而不是秒为单位产生结果。

结论

虽然 df.apply() 提供了一个方便的接口来将函数应用于数据帧,对于大型数据集,其性能限制变得显而易见。对于性能关键型应用程序,NumPy 的 np.vectorize() 及其 Numba 中 JIT 编译的对应项为创建新列提供了卓越的速度。还值得注意的是,使用本机 NumPy 函数的真正向量化操作是大规模数据操作的最有效选择。

以上是Pandas Apply 与 NumPy Vectorize:哪个创建新列更快?的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1655
14
CakePHP 教程
1413
52
Laravel 教程
1306
25
PHP教程
1252
29
C# 教程
1226
24
Python vs.C:申请和用例 Python vs.C:申请和用例 Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

Python:游戏,Guis等 Python:游戏,Guis等 Apr 13, 2025 am 12:14 AM

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

您可以在2小时内学到多少python? 您可以在2小时内学到多少python? Apr 09, 2025 pm 04:33 PM

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

2小时的Python计划:一种现实的方法 2小时的Python计划:一种现实的方法 Apr 11, 2025 am 12:04 AM

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python与C:学习曲线和易用性 Python与C:学习曲线和易用性 Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python:探索其主要应用程序 Python:探索其主要应用程序 Apr 10, 2025 am 09:41 AM

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

Python和时间:充分利用您的学习时间 Python和时间:充分利用您的学习时间 Apr 14, 2025 am 12:02 AM

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python:自动化,脚本和任务管理 Python:自动化,脚本和任务管理 Apr 16, 2025 am 12:14 AM

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

See all articles