首页 > 后端开发 > Python教程 > 我尝试过花岗岩。

我尝试过花岗岩。

Susan Sarandon
发布: 2024-10-28 04:23:01
原创
722 人浏览过

I tried out Granite .

花岗岩3.0

Granite 3.0 是一个开源、轻量级的生成语言模型系列,专为一系列企业级任务而设计。它原生支持多语言功能、编码、推理和工具使用,适合企业环境。

我测试了运行这个模型,看看它可以处理哪些任务。

环境设置

我在 Google Colab 中设置了 Granite 3.0 环境,并使用以下命令安装了必要的库:

!pip install torch torchvision torchaudio
!pip install accelerate
!pip install -U transformers
登录后复制
登录后复制

执行

我测试了Granite 3.0的2B和8B型号的性能。

2B型号

我运行了 2B 模型。这是 2B 模型的代码示例:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "auto"
model_path = "ibm-granite/granite-3.0-2b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()

chat = [
    { "role": "user", "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
input_tokens = tokenizer(chat, return_tensors="pt").to("cuda")
output = model.generate(**input_tokens, max_new_tokens=100)
output = tokenizer.batch_decode(output)
print(output[0])
登录后复制
登录后复制

输出

<|start_of_role|>user<|end_of_role|>Please list one IBM Research laboratory located in the United States. You should only output its name and location.<|end_of_text|>
<|start_of_role|>assistant<|end_of_role|>1. IBM Research - Austin, Texas<|end_of_text|>
登录后复制

8B型号

将2b替换为8b即可使用8B模型。以下是 8B 模型的没有角色和用户输入字段的代码示例:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "auto"
model_path = "ibm-granite/granite-3.0-8b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()

chat = [
    { "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)

input_tokens = tokenizer(chat, add_special_tokens=False, return_tensors="pt").to("cuda")
output = model.generate(**input_tokens, max_new_tokens=100)
generated_text = tokenizer.decode(output[0][input_tokens["input_ids"].shape[1]:], skip_special_tokens=True)
print(generated_text)
登录后复制

输出

1. IBM Almaden Research Center - San Jose, California
登录后复制

函数调用

我探索了函数调用功能,并使用虚拟函数对其进行了测试。这里,get_current_weather 被定义为返回模拟天气数据。

虚拟函数

import json

def get_current_weather(location: str) -> dict:
    """
    Retrieves current weather information for the specified location (default: San Francisco).
    Args:
        location (str): Name of the city to retrieve weather data for.
    Returns:
        dict: Dictionary containing weather information (temperature, description, humidity).
    """
    print(f"Getting current weather for {location}")

    try:
        weather_description = "sample"
        temperature = "20.0"
        humidity = "80.0"

        return {
            "description": weather_description,
            "temperature": temperature,
            "humidity": humidity
        }
    except Exception as e:
        print(f"Error fetching weather data: {e}")
        return {"weather": "NA"}
登录后复制

即时创作

我创建了一个调用该函数的提示:

functions = [
    {
        "name": "get_current_weather",
        "description": "Get the current weather",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {
                    "type": "string",
                    "description": "The city and country code, e.g. San Francisco, US",
                }
            },
            "required": ["location"],
        },
    },
]
query = "What's the weather like in Boston?"
payload = {
    "functions_str": [json.dumps(x) for x in functions]
}
chat = [
    {"role":"system","content": f"You are a helpful assistant with access to the following function calls. Your task is to produce a sequence of function calls necessary to generate response to the user utterance. Use the following function calls as required.{payload}"},
    {"role": "user", "content": query }
]
登录后复制

响应生成

使用以下代码,我生成了一个响应:

instruction_1 = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
input_tokens = tokenizer(instruction_1, return_tensors="pt").to("cuda")
output = model.generate(**input_tokens, max_new_tokens=1024)
generated_text = tokenizer.decode(output[0][input_tokens["input_ids"].shape[1]:], skip_special_tokens=True)
print(generated_text)
登录后复制

输出

{'name': 'get_current_weather', 'arguments': {'location': 'Boston'}}
登录后复制

这证实了模型能够根据指定城市生成正确的函数调用。

增强交互流程的格式规范

Granite 3.0 允许格式规范以促进结构化格式的响应。本节解释如何使用 [UTTERANCE] 进行回应,使用 [THINK] 进行内心想法。

另一方面,由于函数调用以纯文本形式输出,因此可能需要实现单独的机制来区分函数调用和常规文本响应。

指定输出格式

以下是指导 AI 输出的示例提示:

prompt = """You are a conversational AI assistant that deepens interactions by alternating between responses and inner thoughts.
<Constraints>
* Record spoken responses after the [UTTERANCE] tag and inner thoughts after the [THINK] tag.
* Use [UTTERANCE] as a start marker to begin outputting an utterance.
* After [THINK], describe your internal reasoning or strategy for the next response. This may include insights on the user's reaction, adjustments to improve interaction, or further goals to deepen the conversation.
* Important: **Use [UTTERANCE] and [THINK] as a start signal without needing a closing tag.**
</Constraints>

Follow these instructions, alternating between [UTTERANCE] and [THINK] formats for responses.
<output example>
example1:
  [UTTERANCE]Hello! How can I assist you today?[THINK]I’ll start with a neutral tone to understand their needs. Preparing to offer specific suggestions based on their response.[UTTERANCE]Thank you! In that case, I have a few methods I can suggest![THINK]Since I now know what they’re looking for, I'll move on to specific suggestions, maintaining a friendly and approachable tone.
...
</output example>

Please respond to the following user_input.
<user_input>
Hello! What can you do?
</user_input>
"""
登录后复制

执行代码示例

生成响应的代码:

chat = [
    { "role": "user", "content": prompt },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)

input_tokens = tokenizer(chat, return_tensors="pt").to("cuda")
output = model.generate(**input_tokens, max_new_tokens=1024)
generated_text = tokenizer.decode(output[0][input_tokens["input_ids"].shape[1]:], skip_special_tokens=True)
print(generated_text)
登录后复制

示例输出

输出如下:

[UTTERANCE]Hello! I'm here to provide information, answer questions, and assist with various tasks. I can help with a wide range of topics, from general knowledge to specific queries. How can I assist you today?
[THINK]I've introduced my capabilities and offered assistance, setting the stage for the user to share their needs or ask questions.
登录后复制

[UTTERANCE] 和 [THINK] 标签已成功使用,允许有效的响应格式。

根据提示的不同,输出中有时可能会出现结束标签(例如[/UTTERANCE]或[/THINK]),但总的来说,一般都可以成功指定输出格式。

流式传输代码示例

让我们看看如何输出流响应。

以下代码使用 asyncio 和线程库来异步传输来自 Granite 3.0 的响应。

!pip install torch torchvision torchaudio
!pip install accelerate
!pip install -U transformers
登录后复制
登录后复制

示例输出

运行上述代码将生成以下格式的异步响应:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "auto"
model_path = "ibm-granite/granite-3.0-2b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()

chat = [
    { "role": "user", "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
input_tokens = tokenizer(chat, return_tensors="pt").to("cuda")
output = model.generate(**input_tokens, max_new_tokens=100)
output = tokenizer.batch_decode(output)
print(output[0])
登录后复制
登录后复制

此示例演示了成功的流式传输。每个token都是异步生成并顺序显示,让用户可以实时查看生成过程。

概括

Granite 3.0 即使使用 8B 型号也能提供相当强的响应。函数调用和格式规范功能也运行良好,表明其具有广泛的应用潜力。

以上是我尝试过花岗岩。的详细内容。更多信息请关注PHP中文网其他相关文章!

来源:dev.to
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
作者最新文章
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板