以下是一些标题选项,每个标题都强调文章的不同方面: 选项 1:重点关注概念和 C 11 功能: * C 11 中的 ScopeGuard:简单的错误处理,但有哪些注意事项
最简单、最简洁的 C 11 ScopeGuard
在 C 11 中,有一个简单的习惯用法可以实现 ScopeGuard,从而简化错误和资源处理。下面是一个简单的解释和实现:
概念:
ScopeGuard 是一个 C 类,它提供了一种定义代码块的方法,当创建守卫的范围退出。这样可以轻松进行清理和错误处理,确保即使在特殊情况下也能释放资源或采取操作。
实现:
<code class="cpp">namespace RAII { template< typename Lambda > class ScopeGuard { mutable bool committed; Lambda rollbackLambda; public: ScopeGuard( const Lambda& _l) : committed(false) , rollbackLambda(_l) {} template< typename AdquireLambda > ScopeGuard( const AdquireLambda& _al , const Lambda& _l) : committed(false) , rollbackLambda(_l) { _al(); } ~ScopeGuard() { if (!committed) rollbackLambda(); } inline void commit() const { committed = true; } }; template< typename aLambda , typename rLambda> const ScopeGuard< rLambda >& makeScopeGuard( const aLambda& _a , const rLambda& _r) { return ScopeGuard< rLambda >( _a , _r ); } template<typename rLambda> const ScopeGuard< rLambda >& makeScopeGuard(const rLambda& _r) { return ScopeGuard< rLambda >(_r ); } }</code>
使用:
<code class="cpp">void SomeFuncThatShouldBehaveAtomicallyInCaseOfExceptions() { std::vector<int> myVec; std::vector<int> someOtherVec; myVec.push_back(5); //first constructor, adquire happens elsewhere const auto& a = RAII::makeScopeGuard( [&]() { myVec.pop_back(); } ); //sintactically neater, since everything happens in a single line const auto& b = RAII::makeScopeGuard( [&]() { someOtherVec.push_back(42); } , [&]() { someOtherVec.pop_back(); } ); b.commit(); a.commit(); }</code>
在此示例中,ScopeGuard 习惯用法用于确保即使在函数范围内引发异常,也会执行清理操作(从向量中弹出元素)。
简单性和局限性:
ScopeGuard 习惯用法的这种实现相对简单和简洁,使其易于使用和理解。然而,原问题的作者也对潜在的缺陷或缺失的专业提出了担忧。让我们解决这些问题:
- 完美转发: 该实现并未充分利用 C 11 完美转发技术。这在 makeScopeGuard 函数中很明显,该函数使用左值引用而不是 lambda 参数的通用引用。使用通用引用将提供更大的灵活性并支持右值 lambda。
- 如果获取抛出异常则回滚: 原始实现不处理“获取”lambda 抛出异常的情况。如果获取 lambda 失败,则永远不会调用回滚 lambda,从而使代码处于不一致的状态。
为了解决这些问题,以下是 ScopeGuard 实现和用法的更新版本:
<code class="cpp">namespace RAII { template< typename Lambda > class ScopeGuard { bool committed; Lambda rollbackLambda; public: ScopeGuard( const Lambda& _l) : committed(false) , rollbackLambda(_l) {} ScopeGuard( const ScopeGuard& _sc) : committed(false) , rollbackLambda(_sc.rollbackLambda) { if (_sc.committed) committed = true; else _sc.commit(); } ScopeGuard( ScopeGuard&& _sc) : committed(false) , rollbackLambda(_sc.rollbackLambda) { if (_sc.committed) committed = true; else _sc.commit(); } //WARNING: only safe if adquire lambda does not throw, otherwise release lambda is never invoked, because the scope guard never finished initialistion.. template< typename AdquireLambda > ScopeGuard( const AdquireLambda& _al , const Lambda& _l) : committed(false) , rollbackLambda(_l) { std::forward<AdquireLambda>(_al)(); } //WARNING: only safe if adquire lambda does not throw, otherwise release lambda is never invoked, because the scope guard never finished initialistion.. template< typename AdquireLambda, typename L > ScopeGuard( AdquireLambda&& _al , L&& _l) : committed(false) , rollbackLambda(std::forward<L>(_l)) { std::forward<AdquireLambda>(_al)(); // just in case the functor has &&-qualified operator() } ~ScopeGuard() { if (!committed) rollbackLambda(); } inline void commit() { committed = true; } }; //WARNING: only safe if adquire lambda does not throw, otherwise release lambda is never invoked, because the scope guard never finished initialistion.. template< typename aLambda , typename rLambda> ScopeGuard< rLambda > // return by value is the preferred C++11 way. makeScopeGuardThatDoesNOTRollbackIfAdquireThrows( aLambda&& _a , rLambda&& _r) // again perfect forwarding { return ScopeGuard< rLambda >( std::forward<aLambda>(_a) , std::forward<rLambda>(_r )); // *** no longer UB, because we're returning by value } template< typename aLambda , typename rLambda> ScopeGuard< rLambda > // return by value is the preferred C++11 way. makeScopeGuardThatDoesRollbackIfAdquireThrows( aLambda&& _a , rLambda&& _r) // again perfect forwarding { auto scope = ScopeGuard< rLambda >(std::forward<rLambda>(_r )); // *** no longer UB, because we're returning by value _a(); return scope; } template<typename rLambda> ScopeGuard< rLambda > makeScopeGuard(rLambda&& _r) { return ScopeGuard< rLambda >( std::forward<rLambda>(_r )); } namespace basic_usage { struct Test { std::vector<int> myVec; std::vector<int> someOtherVec; bool shouldThrow; void run() { shouldThrow = true; try { SomeFuncThatShouldBehaveAtomicallyInCaseOfExceptionsUsingScopeGuardsThatDoesNOTRollbackIfAdquireThrows(); } catch (...) { AssertMsg( myVec.size() == 0 && someOtherVec.size() == 0 , "rollback did not work"); } shouldThrow = false; SomeFuncThatShouldBehaveAtomicallyInCaseOfExceptionsUsingScopeGuardsThatDoesNOTRollbackIfAdquireThrows(); AssertMsg( myVec.size() == 1 && someOtherVec.size() == 1 , "unexpected end state"); shouldThrow = true; myVec.clear(); someOtherVec.clear(); try { SomeFuncThatShouldBehaveAtomicallyInCaseOfExceptionsUsingScopeGuardsThatDoesRollbackIfAdquireThrows(); } catch (...) { AssertMsg( myVec.size() == 0 && someOtherVec.size() == 0 , "rollback did not work"); } } void SomeFuncThatShouldBehaveAtomicallyInCaseOfExceptionsUsingScopeGuardsThatDoesNOTRollbackIfAdquireThrows() //throw() { myVec.push_back(42);</code>
以上是以下是一些标题选项,每个标题都强调文章的不同方面: 选项 1:重点关注概念和 C 11 功能: * C 11 中的 ScopeGuard:简单的错误处理,但有哪些注意事项的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

C语言数据结构:树和图的数据表示与操作树是一个层次结构的数据结构由节点组成,每个节点包含一个数据元素和指向其子节点的指针二叉树是一种特殊类型的树,其中每个节点最多有两个子节点数据表示structTreeNode{intdata;structTreeNode*left;structTreeNode*right;};操作创建树遍历树(先序、中序、后序)搜索树插入节点删除节点图是一个集合的数据结构,其中的元素是顶点,它们通过边连接在一起边可以是带权或无权的数据表示邻

文件操作难题的真相:文件打开失败:权限不足、路径错误、文件被占用。数据写入失败:缓冲区已满、文件不可写、磁盘空间不足。其他常见问题:文件遍历缓慢、文本文件编码不正确、二进制文件读取错误。

C语言函数是代码模块化和程序搭建的基础。它们由声明(函数头)和定义(函数体)组成。C语言默认使用值传递参数,但也可使用地址传递修改外部变量。函数可以有返回值或无返回值,返回值类型必须与声明一致。函数命名应清晰易懂,使用驼峰或下划线命名法。遵循单一职责原则,保持函数简洁性,以提高可维护性和可读性。

C语言函数名定义包括:返回值类型、函数名、参数列表和函数体。函数名应清晰、简洁、统一风格,避免与关键字冲突。函数名具有作用域,可在声明后使用。函数指针允许将函数作为参数传递或赋值。常见错误包括命名冲突、参数类型不匹配和未声明的函数。性能优化重点在函数设计和实现上,而清晰、易读的代码至关重要。

C语言函数是可重复利用的代码块,它接收输入,执行操作,返回结果,可将代码模块化提高可复用性,降低复杂度。函数内部机制包含参数传递、函数执行、返回值,整个过程涉及优化如函数内联。编写好的函数遵循单一职责原则、参数数量少、命名规范、错误处理。指针与函数结合能实现更强大的功能,如修改外部变量值。函数指针将函数作为参数传递或存储地址,用于实现动态调用函数。理解函数特性和技巧是编写高效、可维护、易理解的C语言程序的关键。

C35 的计算本质上是组合数学,代表从 5 个元素中选择 3 个的组合数,其计算公式为 C53 = 5! / (3! * 2!),可通过循环避免直接计算阶乘以提高效率和避免溢出。另外,理解组合的本质和掌握高效的计算方法对于解决概率统计、密码学、算法设计等领域的许多问题至关重要。

算法是解决问题的指令集,其执行速度和内存占用各不相同。编程中,许多算法都基于数据搜索和排序。本文将介绍几种数据检索和排序算法。线性搜索假设有一个数组[20,500,10,5,100,1,50],需要查找数字50。线性搜索算法会逐个检查数组中的每个元素,直到找到目标值或遍历完整个数组。算法流程图如下:线性搜索的伪代码如下:检查每个元素:如果找到目标值:返回true返回falseC语言实现:#include#includeintmain(void){i

C#和C 的历史与演变各有特色,未来前景也不同。1.C 由BjarneStroustrup在1983年发明,旨在将面向对象编程引入C语言,其演变历程包括多次标准化,如C 11引入auto关键字和lambda表达式,C 20引入概念和协程,未来将专注于性能和系统级编程。2.C#由微软在2000年发布,结合C 和Java的优点,其演变注重简洁性和生产力,如C#2.0引入泛型,C#5.0引入异步编程,未来将专注于开发者的生产力和云计算。
