如何在 Python 中执行指数和对数曲线拟合?
曲线拟合:Python 中的指数和对数方法
虽然在 Python 中可以使用 polyfit() 轻松进行多项式曲线拟合,但本指南探讨了指数和对数曲线的方法
对数拟合
要拟合 y = A B log x 形式的直线,只需执行 y 对 log x 的多项式拟合即可。
<code class="python">import numpy as np x = np.array([1, 7, 20, 50, 79]) y = np.array([10, 19, 30, 35, 51]) coeffs = np.polyfit(np.log(x), y, 1) print("y ≈", coeffs[1], "log(x) +", coeffs[0]) # y ≈ 8.46 log(x) + 6.62</code>
指数拟合
要拟合 y = Ae^{Bx} 形式的直线,请取两边的对数,并执行 log y 对 x 的多项式拟合。
<code class="python">x = np.array([10, 19, 30, 35, 51]) y = np.array([1, 7, 20, 50, 79]) coeffs = np.polyfit(x, np.log(y), 1) print("y ≈ exp(", coeffs[1], ") * exp(", coeffs[0], " * x) = 0.670 * exp(0.105 * x)")</code>
为了更好准确度,利用 polyfit() 中的 w 关键字使权重与 y 成正比。
<code class="python">coeffs = np.polyfit(x, np.log(y), 1, w=np.sqrt(y)) print("y ≈ exp(", coeffs[1], ") * exp(", coeffs[0], " * x) = 4.12 * exp(0.0601 * x)")</code>
请注意,大多数电子表格和科学计算器应用程序使用未加权公式进行指数回归,因此如果需要兼容性,请避免使用权重。
使用 scipy.optimize.curve_fit
如果 scipy 可用,则使用 curve_fit 来拟合模型,无需转换。
<code class="python">from scipy.optimize import curve_fit # Logarithmic fitting coeffs, _ = curve_fit(lambda t, a, b: a + b * np.log(t), x, y) print("y ≈", coeffs[1], "log(x) +", coeffs[0]) # y ≈ 6.62 + 8.46 log(x) # Exponential fitting with initial guess coeffs, _ = curve_fit(lambda t, a, b: a * np.exp(b * t), x, y, p0=(4, 0.1)) print("y ≈", coeffs[0], "exp(", coeffs[1], " * x) = 4.88 exp(0.0553 x)")</code>
通过提供初始猜测,curve_fit 可以达到期望的结果指数拟合的局部最小值,比变换后的 polyfit 方法更准确。
以上是如何在 Python 中执行指数和对数曲线拟合?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优
