如何使用 Apache Spark 有效计算大型数据集的中位数和分位数?
使用 Apache Spark 分布中位数和分位数
对于使用 IPython 和 Spark 对大整数 RDD 进行分布式中值计算,合适的方法是排序RDD,然后访问中间元素。要对 RDD 进行排序,请使用 sortBy() 方法。要找到中位数,请执行以下步骤:
- 导入必要的库:首先导入 NumPy 进行中值计算。
- 对 RDD 进行排序: 对 RDD 进行排序以允许访问中值元素。
- 计算中值: 通过获取排序后的 RDD 的中间元素来访问中值。
对于分位数,您可以使用 Spark 2.0 中引入的 approxQuantile() 方法或使用 Greenwald-Khanna 算法创建自定义代码。这些函数使用指定的相对误差计算分位数。
自定义分位数计算:这是用于分位数估计的自定义 PySpark 函数:
1 2 |
|
精确分位数计算(Spark
如果准确性至关重要,请考虑使用 NumPy 在本地收集和计算分位数。这种方法通常更有效并且避免了分布式计算。但是,内存要求可能会很高。
Hive UDAF 分位数:
将 HiveContext 与整数或连续值一起使用时,Hive UDAF 提供了另一种分位数估计选项。可以通过针对 DataFrame 的 SQL 查询来访问这些函数:
1 |
|
以上是如何使用 Apache Spark 有效计算大型数据集的中位数和分位数?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)