pandas 的 groupby 函数中的 apply 方法,当应用于 groupby 对象时,允许用户对每个组执行自定义操作。然而,在某些情况下,apply 方法表现出的行为可能会令人费解,因为它似乎在数据集中的第一组上执行了两次指定的函数。
在本文中,我们将深入研究找出这种行为背后的原因,并根据特定用例探索修改组的替代方法。
apply 方法在第一组上的双重执行是有意的设计选择。该方法需要确定指定函数返回的数据的形状,以有效地将其与现有的DataFrame结合起来。它通过调用该函数两次来实现此目的:
虽然这两次调用可能看起来没有必要,但它对于确保返回数据与 DataFrame 的完整性和兼容性至关重要。
根据所需的操作,用户可以利用替代函数来实现类似的结果,而不会遇到双重执行行为:
在大多数情况下,在第一组上双重执行 apply 不会造成重大问题,特别是在应用的函数没有副作用的情况下。但是,如果该函数确实修改了 DataFrame,则了解此行为以避免意外后果非常重要。
要解决此问题,请考虑将 apply 的结果分配给新对象,而不是直接修改原始 DataFrame。这确保了双重执行不会影响现有数据。
例如,以下代码演示了如何使用 apply 方法来修改 DataFrame 而没有副作用:
<code class="python">import pandas as pd df = pd.DataFrame({'class': ['A', 'B', 'C'], 'count': [1, 0, 2]}) def checkit(group): print(group) df.groupby('class', group_keys = True).apply(checkit)</code>
由于 apply 的双重执行,此代码将打印每个组两次。但是,它不会修改原始 df.相反,以下代码将增加每个组的计数列:
<code class="python">import pandas as pd df = pd.DataFrame({'class': ['A', 'B', 'C'], 'count': [1, 0, 2]}) def checkit(group): print(group) df.groupby('class', group_keys = True).apply(checkit)</code>
虽然 apply 仍会将每个组打印两次,但它只会为每个组增加一次计数,如更新后的 df 所示。
以上是为什么 Pandas 的 GroupBy.apply 方法在第一组上执行两次?的详细内容。更多信息请关注PHP中文网其他相关文章!