如何从具有特定模式的文本文件创建 Pandas DataFrame,其中状态由'[edit]\”表示,区域由'[number]\”表示?
从具有特定模式的文本文件创建 Pandas DataFrame
问题陈述:
目标是从具有以下结构的文本文件创建 Pandas DataFrame:
Alabama[edit] Auburn (Auburn University)[1] Florence (University of North Alabama) Jacksonville (Jacksonville State University)[2] Livingston (University of West Alabama)[2] Montevallo (University of Montevallo)[2] Troy (Troy University)[2] Tuscaloosa (University of Alabama, Stillman College, Shelton State)[3][4] Tuskegee (Tuskegee University)[5] Alaska[edit] Fairbanks (University of Alaska Fairbanks)[2] Arizona[edit] Flagstaff (Northern Arizona University)[6] Tempe (Arizona State University) Tucson (University of Arizona) Arkansas[edit]
其中带有“[edit]”的行表示州,带有“[number]”的行表示区域。 DataFrame 应根据这些模式分割数据,并为每个区域名称重复州名称。
解决方案:
要实现这一点,我们可以按照以下步骤操作:
- 使用 pandas 将文本文件读取为 DataFrame,使用分号作为分隔符并创建名为“区域名称”的列:
df = pd.read_csv('filename.txt', sep=";", names=['Region Name'])
- 使用字符串提取方法插入名为“State”的新列,从包含“[edit]”的行中提取州名称。然后,我们使用前向填充 (ffill) 来填充缺失值:
df.insert(0, 'State', df['Region Name'].str.extract('(.*)\[edit\]', expand=False).ffill())
- 将“区域名称”列中括号中的任何文本替换为空字符串,以删除区域名称特征:
df['Region Name'] = df['Region Name'].str.replace(r' \(.+$', '')
- 使用布尔索引和 str.contains 函数删除包含“[edit]”的行。生成的 DataFrame 包含所需的数据:
df = df[~df['Region Name'].str.contains('\[edit\]')].reset_index(drop=True) print (df)
示例输出:
输出 DataFrame 将如下所示:
State Region Name 0 Alabama Auburn 1 Alabama Florence 2 Alabama Jacksonville 3 Alabama Livingston 4 Alabama Montevallo 5 Alabama Troy 6 Alabama Tuscaloosa 7 Alabama Tuskegee 8 Alaska Fairbanks 9 Arizona Flagstaff 10 Arizona Tempe 11 Arizona Tucson
以上是如何从具有特定模式的文本文件创建 Pandas DataFrame,其中状态由'[edit]\”表示,区域由'[number]\”表示?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优
