在 Kubernetes 上部署 MongoDB 集合生成器
创建一个实用程序来生成 100 个 MongoDB 集合,每个集合填充 100 万个随机文档,并将其部署到 Kubernetes 上涉及几个步骤。本指南逐步介绍了从设置 Kubernetes 环境到生成集合以及在专用命名空间中部署作业的整个过程。
1. 设置 Kubernetes 环境
确保您有 Kubernetes 集群(例如 GKE、EKS、AKS 或 Minikube)并配置 kubectl 以连接到它。
2. 创建专用命名空间
要保持此部署隔离,请创建一个名为 my-lab 的命名空间:
kubectl create namespace my-lab kubectl get ns my-lab
3. 在 Kubernetes 上部署 MongoDB
创建持久卷 (PV)
创建 mongo-pv.yaml 文件来定义 MongoDB 数据的持久卷:
apiVersion: v1 kind: PersistentVolume metadata: name: mongo-pv namespace: my-lab spec: capacity: storage: 10Gi accessModes: - ReadWriteOnce hostPath: path: /data/mongo
应用PV:
kubectl apply -f mongo-pv.yaml
创建持久卷声明 (PVC)
在 mongo-pvc.yaml 中定义持久卷声明:
apiVersion: v1 kind: PersistentVolumeClaim metadata: name: mongo-pvc namespace: my-lab spec: accessModes: - ReadWriteOnce resources: requests: storage: 10Gi
应用 PVC:
kubectl apply -f mongo-pvc.yaml
创建 MongoDB 部署
在 mongo-deployment.yaml 中定义 MongoDB 部署和服务:
apiVersion: apps/v1 kind: Deployment metadata: name: mongo namespace: my-lab spec: replicas: 1 selector: matchLabels: app: mongo template: metadata: labels: app: mongo spec: containers: - name: mongo image: mongo:latest ports: - containerPort: 27017 env: - name: MONGO_INITDB_ROOT_USERNAME value: "root" - name: MONGO_INITDB_ROOT_PASSWORD value: "password" volumeMounts: - name: mongo-storage mountPath: /data/db volumes: - name: mongo-storage persistentVolumeClaim: claimName: mongo-pvc --- apiVersion: v1 kind: Service metadata: name: mongo namespace: my-lab spec: type: ClusterIP ports: - port: 27017 targetPort: 27017 selector: app: mongo
应用部署:
kubectl apply -f mongo-deployment.yaml
4. 连接到 MongoDB
通过连接来验证 MongoDB 部署:
kubectl exec -it <mongo-pod-name> -n my-lab -- mongosh -u root -p password
5. 验证持久性
缩减并备份 MongoDB 部署以确保数据持续存在:
kubectl scale deployment mongo --replicas=0 -n my-lab kubectl scale deployment mongo --replicas=1 -n my-lab
6. 创建一个用于生成集合的 Python 实用程序
使用 Python,定义一个脚本来创建集合并用随机文档填充它们:
import random import string import pymongo from pymongo import MongoClient def random_string(length=10): return ''.join(random.choices(string.ascii_letters + string.digits, k=length)) def create_collections_and_populate(db_name='mydatabase', collections_count=100, documents_per_collection=1_000_000): client = MongoClient('mongodb://root:password@mongo:27017/') db = client[db_name] for i in range(collections_count): collection_name = f'collection_{i+1}' collection = db[collection_name] print(f'Creating collection: {collection_name}') bulk_data = [{'name': random_string(), 'value': random.randint(1, 100)} for _ in range(documents_per_collection)] collection.insert_many(bulk_data) print(f'Inserted {documents_per_collection} documents into {collection_name}') if __name__ == "__main__": create_collections_and_populate()
7. Docker 化 Python 实用程序
创建一个 Dockerfile 来容器化 Python 脚本:
FROM python:3.9-slim WORKDIR /app COPY mongo_populator.py . RUN pip install pymongo CMD ["python", "mongo_populator.py"]
构建镜像并将其推送到容器注册表:
docker build -t <your-docker-repo>/mongo-populator:latest . docker push <your-docker-repo>/mongo-populator:latest
8. 创建 Kubernetes 作业
在 mongo-populator-job.yaml 中定义一个作业来运行集合生成脚本:
apiVersion: batch/v1 kind: Job metadata: name: mongo-populator namespace: my-lab spec: template: spec: containers: - name: mongo-populator image: <your-docker-repo>/mongo-populator:latest env: - name: MONGO_URI value: "mongodb://root:password@mongo:27017/" restartPolicy: Never backoffLimit: 4
申请工作:
kubectl apply -f mongo-populator-job.yaml
9. 验证集合生成
作业完成后,连接到 MongoDB 以检查数据:
kubectl exec -it <mongo-pod-name> -n my-lab -- mongosh -u root -p password
在 MongoDB 中:
use mydatabase show collections db.collection_9.find().limit(5).pretty() db.getCollectionNames().forEach(function(collection) { var count = db[collection].countDocuments(); print(collection + ": " + count + " documents"); });
每个集合应包含 100 万个文档,确认数据生成作业成功。
以上是在 Kubernetes 上部署 MongoDB 集合生成器的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。
