首页 后端开发 Python教程 在 Kubernetes 上部署 MongoDB 集合生成器

在 Kubernetes 上部署 MongoDB 集合生成器

Nov 03, 2024 am 03:54 AM

创建一个实用程序来生成 100 个 MongoDB 集合,每个集合填充 100 万个随机文档,并将其部署到 Kubernetes 上涉及几个步骤。本指南逐步介绍了从设置 Kubernetes 环境到生成集合以及在专用命名空间中部署作业的整个过程。

Deploying a MongoDB Collection Generator on Kubernetes

1. 设置 Kubernetes 环境

确保您有 Kubernetes 集群(例如 GKE、EKS、AKS 或 Minikube)并配置 kubectl 以连接到它。

2. 创建专用命名空间

要保持此部署隔离,请创建一个名为 my-lab 的命名空间:

kubectl create namespace my-lab
kubectl get ns my-lab
登录后复制

3. 在 Kubernetes 上部署 MongoDB

创建持久卷 (PV)

创建 mongo-pv.yaml 文件来定义 MongoDB 数据的持久卷:

apiVersion: v1
kind: PersistentVolume
metadata:
  name: mongo-pv
  namespace: my-lab
spec:
  capacity:
    storage: 10Gi
  accessModes:
    - ReadWriteOnce
  hostPath:
    path: /data/mongo
登录后复制

应用PV:

kubectl apply -f mongo-pv.yaml
登录后复制

创建持久卷声明 (PVC)

在 mongo-pvc.yaml 中定义持久卷声明:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: mongo-pvc
  namespace: my-lab
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 10Gi
登录后复制

应用 PVC:

kubectl apply -f mongo-pvc.yaml
登录后复制

创建 MongoDB 部署

在 mongo-deployment.yaml 中定义 MongoDB 部署和服务:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: mongo
  namespace: my-lab
spec:
  replicas: 1
  selector:
    matchLabels:
      app: mongo
  template:
    metadata:
      labels:
        app: mongo
    spec:
      containers:
        - name: mongo
          image: mongo:latest
          ports:
            - containerPort: 27017
          env:
            - name: MONGO_INITDB_ROOT_USERNAME
              value: "root"
            - name: MONGO_INITDB_ROOT_PASSWORD
              value: "password"
          volumeMounts:
            - name: mongo-storage
              mountPath: /data/db
      volumes:
        - name: mongo-storage
          persistentVolumeClaim:
            claimName: mongo-pvc
---
apiVersion: v1
kind: Service
metadata:
  name: mongo
  namespace: my-lab
spec:
  type: ClusterIP
  ports:
    - port: 27017
      targetPort: 27017
  selector:
    app: mongo
登录后复制

应用部署:

kubectl apply -f mongo-deployment.yaml
登录后复制

4. 连接到 MongoDB

通过连接来验证 MongoDB 部署:

kubectl exec -it <mongo-pod-name> -n my-lab -- mongosh -u root -p password
登录后复制
登录后复制

5. 验证持久性

缩减并备份 MongoDB 部署以确保数据持续存在:

kubectl scale deployment mongo --replicas=0 -n my-lab
kubectl scale deployment mongo --replicas=1 -n my-lab
登录后复制

6. 创建一个用于生成集合的 Python 实用程序

使用 Python,定义一个脚本来创建集合并用随机文档填充它们:

import random
import string
import pymongo
from pymongo import MongoClient

def random_string(length=10):
    return ''.join(random.choices(string.ascii_letters + string.digits, k=length))

def create_collections_and_populate(db_name='mydatabase', collections_count=100, documents_per_collection=1_000_000):
    client = MongoClient('mongodb://root:password@mongo:27017/')
    db = client[db_name]

    for i in range(collections_count):
        collection_name = f'collection_{i+1}'
        collection = db[collection_name]
        print(f'Creating collection: {collection_name}')

        bulk_data = [{'name': random_string(), 'value': random.randint(1, 100)} for _ in range(documents_per_collection)]
        collection.insert_many(bulk_data)
        print(f'Inserted {documents_per_collection} documents into {collection_name}')

if __name__ == "__main__":
    create_collections_and_populate()
登录后复制

7. Docker 化 Python 实用程序

创建一个 Dockerfile 来容器化 Python 脚本:

FROM python:3.9-slim

WORKDIR /app
COPY mongo_populator.py .
RUN pip install pymongo

CMD ["python", "mongo_populator.py"]
登录后复制

构建镜像并将其推送到容器注册表:

docker build -t <your-docker-repo>/mongo-populator:latest .
docker push <your-docker-repo>/mongo-populator:latest
登录后复制

8. 创建 Kubernetes 作业

在 mongo-populator-job.yaml 中定义一个作业来运行集合生成脚本:

apiVersion: batch/v1
kind: Job
metadata:
  name: mongo-populator
  namespace: my-lab
spec:
  template:
    spec:
      containers:
        - name: mongo-populator
          image: <your-docker-repo>/mongo-populator:latest
          env:
            - name: MONGO_URI
              value: "mongodb://root:password@mongo:27017/"
      restartPolicy: Never
  backoffLimit: 4
登录后复制

申请工作:

kubectl apply -f mongo-populator-job.yaml
登录后复制

9. 验证集合生成

作业完成后,连接到 MongoDB 以检查数据:

kubectl exec -it <mongo-pod-name> -n my-lab -- mongosh -u root -p password
登录后复制
登录后复制

在 MongoDB 中:

use mydatabase
show collections
db.collection_9.find().limit(5).pretty()

db.getCollectionNames().forEach(function(collection) {
     var count = db[collection].countDocuments();
     print(collection + ": " + count + " documents");
 });

登录后复制

每个集合应包含 100 万个文档,确认数据生成作业成功。

以上是在 Kubernetes 上部署 MongoDB 集合生成器的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1662
14
CakePHP 教程
1419
52
Laravel 教程
1311
25
PHP教程
1262
29
C# 教程
1235
24
Python vs.C:申请和用例 Python vs.C:申请和用例 Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时的Python计划:一种现实的方法 2小时的Python计划:一种现实的方法 Apr 11, 2025 am 12:04 AM

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python:游戏,Guis等 Python:游戏,Guis等 Apr 13, 2025 am 12:14 AM

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

您可以在2小时内学到多少python? 您可以在2小时内学到多少python? Apr 09, 2025 pm 04:33 PM

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

Python与C:学习曲线和易用性 Python与C:学习曲线和易用性 Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和时间:充分利用您的学习时间 Python和时间:充分利用您的学习时间 Apr 14, 2025 am 12:02 AM

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python:探索其主要应用程序 Python:探索其主要应用程序 Apr 10, 2025 am 09:41 AM

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

Python:自动化,脚本和任务管理 Python:自动化,脚本和任务管理 Apr 16, 2025 am 12:14 AM

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

See all articles