首页 web前端 js教程 JavaScript 数组方法背后的算法

JavaScript 数组方法背后的算法

Nov 03, 2024 am 07:10 AM

Algorithms Behind JavaScript Array Methods

JavaScript 数组方法背后的算法。

JavaScript 数组带有各种内置方法,允许操作和检索数组中的数据。以下是从大纲中提取的数组方法列表:

  1. concat()
  2. 加入()
  3. 填充()
  4. 包括()
  5. indexOf()
  6. 反向()
  7. 排序()
  8. 拼接()
  9. 在()
  10. copyWithin()
  11. 平()
  12. Array.from()
  13. findLastIndex()
  14. forEach()
  15. 每个()
  16. 条目()
  17. 值()
  18. toReversed()(创建数组的反向副本而不修改原始数组)
  19. toSorted()(创建数组的排序副本而不修改原始数组)
  20. toSpliced()(创建一个新数组,添加或删除元素,而不修改原始数组)
  21. with()(返回替换了特定元素的数组副本)
  22. Array.fromAsync()
  23. Array.of()
  24. 地图()
  25. flatMap()
  26. 减少()
  27. reduceRight()
  28. 一些()
  29. 查找()
  30. findIndex()
  31. findLast()

让我分解一下每个 JavaScript 数组方法所使用的常用算法:

1. concat()

  • 算法:线性追加/合并
  • 时间复杂度:O(n),其中 n 是所有数组的总长度
  • 内部使用迭代来创建新数组并复制元素
// concat()
Array.prototype.myConcat = function(...arrays) {
  const result = [...this];
  for (const arr of arrays) {
    for (const item of arr) {
      result.push(item);
    }
  }
  return result;
};
登录后复制
登录后复制
登录后复制

2. 加入()

  • 算法:字符串连接的线性遍历
  • 时间复杂度:O(n)
  • 迭代数组元素并构建结果字符串
// join()
Array.prototype.myJoin = function(separator = ',') {
  let result = '';
  for (let i = 0; i < this.length; i++) {
    result += this[i];
    if (i < this.length - 1) result += separator;
  }
  return result;
};
登录后复制
登录后复制

3. 填充()

  • 算法:带赋值的线性遍历
  • 时间复杂度:O(n)
  • 带有赋值的简单迭代
// fill()
Array.prototype.myFill = function(value, start = 0, end = this.length) {
  for (let i = start; i < end; i++) {
    this[i] = value;
  }
  return this;
};
登录后复制
登录后复制

4. 包含()

  • 算法:线性搜索
  • 时间复杂度:O(n)
  • 顺序扫描直到找到元素或到达结束
// includes()
Array.prototype.myIncludes = function(searchElement, fromIndex = 0) {
  const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex);
  for (let i = startIndex; i < this.length; i++) {
    if (this[i] === searchElement || (Number.isNaN(this[i]) && Number.isNaN(searchElement))) {
      return true;
    }
  }
  return false;
};
登录后复制
登录后复制

5.indexOf()

  • 算法:线性搜索
  • 时间复杂度:O(n)
  • 从开始顺序扫描直到找到匹配
// indexOf()
Array.prototype.myIndexOf = function(searchElement, fromIndex = 0) {
  const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex);
  for (let i = startIndex; i < this.length; i++) {
    if (this[i] === searchElement) return i;
  }
  return -1;
};
登录后复制
登录后复制

6. 反向()

  • 算法:两指针交换
  • 时间复杂度:O(n/2)
  • 从开始/结束向内移动元素
// reverse()
Array.prototype.myReverse = function() {
  let left = 0;
  let right = this.length - 1;

  while (left < right) {
    // Swap elements
    const temp = this[left];
    this[left] = this[right];
    this[right] = temp;
    left++;
    right--;
  }

  return this;
};
登录后复制
登录后复制

7. 排序()

  • 算法:通常为 TimSort(合并排序和插入排序的混合)
  • 时间复杂度:O(n log n)
  • 现代浏览器使用自适应排序算法
// sort()
Array.prototype.mySort = function(compareFn) {
  // Implementation of QuickSort for simplicity
  // Note: Actual JS engines typically use TimSort
  const quickSort = (arr, low, high) => {
    if (low < high) {
      const pi = partition(arr, low, high);
      quickSort(arr, low, pi - 1);
      quickSort(arr, pi + 1, high);
    }
  };

  const partition = (arr, low, high) => {
    const pivot = arr[high];
    let i = low - 1;

    for (let j = low; j < high; j++) {
      const compareResult = compareFn ? compareFn(arr[j], pivot) : String(arr[j]).localeCompare(String(pivot));
      if (compareResult <= 0) {
        i++;
        [arr[i], arr[j]] = [arr[j], arr[i]];
      }
    }
    [arr[i + 1], arr[high]] = [arr[high], arr[i + 1]];
    return i + 1;
  };

  quickSort(this, 0, this.length - 1);
  return this;
};
登录后复制
登录后复制

8. 拼接()

  • 算法:线性数组修改
  • 时间复杂度:O(n)
  • 就地移动元素并修改数组
// splice()
Array.prototype.mySplice = function(start, deleteCount, ...items) {
  const len = this.length;
  const actualStart = start < 0 ? Math.max(len + start, 0) : Math.min(start, len);
  const actualDeleteCount = Math.min(Math.max(deleteCount || 0, 0), len - actualStart);

  // Store deleted elements
  const deleted = [];
  for (let i = 0; i < actualDeleteCount; i++) {
    deleted[i] = this[actualStart + i];
  }

  // Shift elements if necessary
  const itemCount = items.length;
  const shiftCount = itemCount - actualDeleteCount;

  if (shiftCount > 0) {
    // Moving elements right
    for (let i = len - 1; i >= actualStart + actualDeleteCount; i--) {
      this[i + shiftCount] = this[i];
    }
  } else if (shiftCount < 0) {
    // Moving elements left
    for (let i = actualStart + actualDeleteCount; i < len; i++) {
      this[i + shiftCount] = this[i];
    }
  }

  // Insert new items
  for (let i = 0; i < itemCount; i++) {
    this[actualStart + i] = items[i];
  }

  this.length = len + shiftCount;
  return deleted;
};
登录后复制
登录后复制

9. 在()

  • 算法:直接索引访问
  • 时间复杂度:O(1)
  • 带有边界检查的简单数组索引
// at()
Array.prototype.myAt = function(index) {
  const actualIndex = index >= 0 ? index : this.length + index;
  return this[actualIndex];
};
登录后复制
登录后复制

10. 复制()

  • 算法:块内存复制
  • 时间复杂度:O(n)
  • 内存复制和移位操作
// copyWithin()
Array.prototype.myCopyWithin = function(target, start = 0, end = this.length) {
  const len = this.length;
  let to = target < 0 ? Math.max(len + target, 0) : Math.min(target, len);
  let from = start < 0 ? Math.max(len + start, 0) : Math.min(start, len);
  let final = end < 0 ? Math.max(len + end, 0) : Math.min(end, len);
  const count = Math.min(final - from, len - to);

  // Copy to temporary array to handle overlapping
  const temp = new Array(count);
  for (let i = 0; i < count; i++) {
    temp[i] = this[from + i];
  }

  for (let i = 0; i < count; i++) {
    this[to + i] = temp[i];
  }

  return this;
};

登录后复制
登录后复制

11. 平()

  • 算法:递归深度优先遍历
  • 时间复杂度:单层为 O(n),深度 d 为 O(d*n)
  • 递归展平嵌套数组
// flat()
Array.prototype.myFlat = function(depth = 1) {
  const flatten = (arr, currentDepth) => {
    const result = [];
    for (const item of arr) {
      if (Array.isArray(item) && currentDepth < depth) {
        result.push(...flatten(item, currentDepth + 1));
      } else {
        result.push(item);
      }
    }
    return result;
  };

  return flatten(this, 0);
};
登录后复制
登录后复制

12. 数组.from()

  • 算法:迭代和复制
  • 时间复杂度:O(n)
  • 从可迭代创建新数组
// Array.from()
Array.myFrom = function(arrayLike, mapFn) {
  const result = [];
  for (let i = 0; i < arrayLike.length; i++) {
    result[i] = mapFn ? mapFn(arrayLike[i], i) : arrayLike[i];
  }
  return result;
};
登录后复制
登录后复制

13. 查找最后一个索引()

  • 算法:反向线性搜索
  • 时间复杂度:O(n)
  • 从末尾开始顺序扫描直到找到匹配项
// findLastIndex()
Array.prototype.myFindLastIndex = function(predicate) {
  for (let i = this.length - 1; i >= 0; i--) {
    if (predicate(this[i], i, this)) return i;
  }
  return -1;
};
登录后复制
登录后复制

14. forEach()

  • 算法:线性迭代
  • 时间复杂度:O(n)
  • 带有回调执行的简单迭代
// forEach()
Array.prototype.myForEach = function(callback) {
  for (let i = 0; i < this.length; i++) {
    if (i in this) {  // Skip holes in sparse arrays
      callback(this[i], i, this);
    }
  }
};
登录后复制
登录后复制

15. 每个()

算法:短路线性扫描
时间复杂度:O(n)
在第一个错误条件下停止

// concat()
Array.prototype.myConcat = function(...arrays) {
  const result = [...this];
  for (const arr of arrays) {
    for (const item of arr) {
      result.push(item);
    }
  }
  return result;
};
登录后复制
登录后复制
登录后复制

16. 条目()

  • 算法:迭代器协议实现
  • 时间复杂度:创建 O(1),完整迭代 O(n)
  • 创建迭代器对象
// join()
Array.prototype.myJoin = function(separator = ',') {
  let result = '';
  for (let i = 0; i < this.length; i++) {
    result += this[i];
    if (i < this.length - 1) result += separator;
  }
  return result;
};
登录后复制
登录后复制

17. 值()

  • 算法:迭代器协议实现
  • 时间复杂度:创建 O(1),完整迭代 O(n)
  • 为值创建迭代器
// fill()
Array.prototype.myFill = function(value, start = 0, end = this.length) {
  for (let i = start; i < end; i++) {
    this[i] = value;
  }
  return this;
};
登录后复制
登录后复制

18. toReversed()

  • 算法:反向迭代复制
  • 时间复杂度:O(n)
  • 创建新的反转数组
// includes()
Array.prototype.myIncludes = function(searchElement, fromIndex = 0) {
  const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex);
  for (let i = startIndex; i < this.length; i++) {
    if (this[i] === searchElement || (Number.isNaN(this[i]) && Number.isNaN(searchElement))) {
      return true;
    }
  }
  return false;
};
登录后复制
登录后复制

19. toSorted()

  • 算法:复制然后 TimSort
  • 时间复杂度:O(n log n)
  • 使用标准排序创建排序副本
// indexOf()
Array.prototype.myIndexOf = function(searchElement, fromIndex = 0) {
  const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex);
  for (let i = startIndex; i < this.length; i++) {
    if (this[i] === searchElement) return i;
  }
  return -1;
};
登录后复制
登录后复制

20. toSpliced()

  • 算法:修改复制
  • 时间复杂度:O(n)
  • 创建修改后的副本
// reverse()
Array.prototype.myReverse = function() {
  let left = 0;
  let right = this.length - 1;

  while (left < right) {
    // Swap elements
    const temp = this[left];
    this[left] = this[right];
    this[right] = temp;
    left++;
    right--;
  }

  return this;
};
登录后复制
登录后复制

21. 与()

  • 算法:单次修改的浅拷贝
  • 时间复杂度:O(n)
  • 创建更改了一个元素的副本
// sort()
Array.prototype.mySort = function(compareFn) {
  // Implementation of QuickSort for simplicity
  // Note: Actual JS engines typically use TimSort
  const quickSort = (arr, low, high) => {
    if (low < high) {
      const pi = partition(arr, low, high);
      quickSort(arr, low, pi - 1);
      quickSort(arr, pi + 1, high);
    }
  };

  const partition = (arr, low, high) => {
    const pivot = arr[high];
    let i = low - 1;

    for (let j = low; j < high; j++) {
      const compareResult = compareFn ? compareFn(arr[j], pivot) : String(arr[j]).localeCompare(String(pivot));
      if (compareResult <= 0) {
        i++;
        [arr[i], arr[j]] = [arr[j], arr[i]];
      }
    }
    [arr[i + 1], arr[high]] = [arr[high], arr[i + 1]];
    return i + 1;
  };

  quickSort(this, 0, this.length - 1);
  return this;
};
登录后复制
登录后复制

22. Array.fromAsync()

  • 算法:异步迭代和收集
  • 时间复杂度:O(n) 异步操作
  • 处理承诺和异步迭代
// splice()
Array.prototype.mySplice = function(start, deleteCount, ...items) {
  const len = this.length;
  const actualStart = start < 0 ? Math.max(len + start, 0) : Math.min(start, len);
  const actualDeleteCount = Math.min(Math.max(deleteCount || 0, 0), len - actualStart);

  // Store deleted elements
  const deleted = [];
  for (let i = 0; i < actualDeleteCount; i++) {
    deleted[i] = this[actualStart + i];
  }

  // Shift elements if necessary
  const itemCount = items.length;
  const shiftCount = itemCount - actualDeleteCount;

  if (shiftCount > 0) {
    // Moving elements right
    for (let i = len - 1; i >= actualStart + actualDeleteCount; i--) {
      this[i + shiftCount] = this[i];
    }
  } else if (shiftCount < 0) {
    // Moving elements left
    for (let i = actualStart + actualDeleteCount; i < len; i++) {
      this[i + shiftCount] = this[i];
    }
  }

  // Insert new items
  for (let i = 0; i < itemCount; i++) {
    this[actualStart + i] = items[i];
  }

  this.length = len + shiftCount;
  return deleted;
};
登录后复制
登录后复制

23. 数组.of()

  • 算法:直接创建数组
  • 时间复杂度:O(n)
  • 从参数创建数组
// at()
Array.prototype.myAt = function(index) {
  const actualIndex = index >= 0 ? index : this.length + index;
  return this[actualIndex];
};
登录后复制
登录后复制

24. 地图()

  • 算法:变换迭代
  • 时间复杂度:O(n)
  • 使用转换后的元素创建新数组
// copyWithin()
Array.prototype.myCopyWithin = function(target, start = 0, end = this.length) {
  const len = this.length;
  let to = target < 0 ? Math.max(len + target, 0) : Math.min(target, len);
  let from = start < 0 ? Math.max(len + start, 0) : Math.min(start, len);
  let final = end < 0 ? Math.max(len + end, 0) : Math.min(end, len);
  const count = Math.min(final - from, len - to);

  // Copy to temporary array to handle overlapping
  const temp = new Array(count);
  for (let i = 0; i < count; i++) {
    temp[i] = this[from + i];
  }

  for (let i = 0; i < count; i++) {
    this[to + i] = temp[i];
  }

  return this;
};

登录后复制
登录后复制

25. 平面地图()

  • 算法:地图展平
  • 时间复杂度:O(n*m),其中 m 是平均映射数组大小
  • 结合了映射和展平
// flat()
Array.prototype.myFlat = function(depth = 1) {
  const flatten = (arr, currentDepth) => {
    const result = [];
    for (const item of arr) {
      if (Array.isArray(item) && currentDepth < depth) {
        result.push(...flatten(item, currentDepth + 1));
      } else {
        result.push(item);
      }
    }
    return result;
  };

  return flatten(this, 0);
};
登录后复制
登录后复制

26. 减少()

  • 算法:线性累加
  • 时间复杂度:O(n)
  • 带回调的顺序累加
// Array.from()
Array.myFrom = function(arrayLike, mapFn) {
  const result = [];
  for (let i = 0; i < arrayLike.length; i++) {
    result[i] = mapFn ? mapFn(arrayLike[i], i) : arrayLike[i];
  }
  return result;
};
登录后复制
登录后复制

27.reduceRight()

  • 算法:反向线性累加
  • 时间复杂度:O(n)
  • 从右到左累积
// findLastIndex()
Array.prototype.myFindLastIndex = function(predicate) {
  for (let i = this.length - 1; i >= 0; i--) {
    if (predicate(this[i], i, this)) return i;
  }
  return -1;
};
登录后复制
登录后复制

28. 一些()

  • 算法:短路线性扫描
  • 时间复杂度:O(n)
  • 在第一个真实条件下停止
// forEach()
Array.prototype.myForEach = function(callback) {
  for (let i = 0; i < this.length; i++) {
    if (i in this) {  // Skip holes in sparse arrays
      callback(this[i], i, this);
    }
  }
};
登录后复制
登录后复制

29. 查找()

  • 算法:线性搜索
  • 时间复杂度:O(n)
  • 顺序扫描直到条件满足
// every()
Array.prototype.myEvery = function(predicate) {
  for (let i = 0; i < this.length; i++) {
    if (i in this && !predicate(this[i], i, this)) {
      return false;
    }
  }
  return true;
};
登录后复制

30. 查找索引()

  • 算法:线性搜索
  • 时间复杂度:O(n)
  • 顺序扫描匹配条件
// entries()
Array.prototype.myEntries = function() {
  let index = 0;
  const array = this;

  return {
    [Symbol.iterator]() {
      return this;
    },
    next() {
      if (index < array.length) {
        return { value: [index, array[index++]], done: false };
      }
      return { done: true };
    }
  };
};
登录后复制

31. 查找最后一个()

  • 算法:反向线性搜索
  • 时间复杂度:O(n)
  • 从末尾开始顺序扫描
// concat()
Array.prototype.myConcat = function(...arrays) {
  const result = [...this];
  for (const arr of arrays) {
    for (const item of arr) {
      result.push(item);
    }
  }
  return result;
};
登录后复制
登录后复制
登录后复制

我已经提供了您请求的所有 31 种数组方法的完整实现。

?在 LinkedIn 上与我联系:

让我们一起深入了解软件工程的世界!我定期分享有关 JavaScript、TypeScript、Node.js、React、Next.js、数据结构、算法、Web 开发等方面的见解。无论您是想提高自己的技能还是在令人兴奋的主题上进行合作,我都乐意与您联系并与您一起成长。

跟我来:Nozibul Islam

以上是JavaScript 数组方法背后的算法的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1670
14
CakePHP 教程
1428
52
Laravel 教程
1329
25
PHP教程
1276
29
C# 教程
1256
24
Python vs. JavaScript:学习曲线和易用性 Python vs. JavaScript:学习曲线和易用性 Apr 16, 2025 am 12:12 AM

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

从C/C到JavaScript:所有工作方式 从C/C到JavaScript:所有工作方式 Apr 14, 2025 am 12:05 AM

从C/C 转向JavaScript需要适应动态类型、垃圾回收和异步编程等特点。1)C/C 是静态类型语言,需手动管理内存,而JavaScript是动态类型,垃圾回收自动处理。2)C/C 需编译成机器码,JavaScript则为解释型语言。3)JavaScript引入闭包、原型链和Promise等概念,增强了灵活性和异步编程能力。

JavaScript和Web:核心功能和用例 JavaScript和Web:核心功能和用例 Apr 18, 2025 am 12:19 AM

JavaScript在Web开发中的主要用途包括客户端交互、表单验证和异步通信。1)通过DOM操作实现动态内容更新和用户交互;2)在用户提交数据前进行客户端验证,提高用户体验;3)通过AJAX技术实现与服务器的无刷新通信。

JavaScript在行动中:现实世界中的示例和项目 JavaScript在行动中:现实世界中的示例和项目 Apr 19, 2025 am 12:13 AM

JavaScript在现实世界中的应用包括前端和后端开发。1)通过构建TODO列表应用展示前端应用,涉及DOM操作和事件处理。2)通过Node.js和Express构建RESTfulAPI展示后端应用。

了解JavaScript引擎:实施详细信息 了解JavaScript引擎:实施详细信息 Apr 17, 2025 am 12:05 AM

理解JavaScript引擎内部工作原理对开发者重要,因为它能帮助编写更高效的代码并理解性能瓶颈和优化策略。1)引擎的工作流程包括解析、编译和执行三个阶段;2)执行过程中,引擎会进行动态优化,如内联缓存和隐藏类;3)最佳实践包括避免全局变量、优化循环、使用const和let,以及避免过度使用闭包。

Python vs. JavaScript:社区,图书馆和资源 Python vs. JavaScript:社区,图书馆和资源 Apr 15, 2025 am 12:16 AM

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

Python vs. JavaScript:开发环境和工具 Python vs. JavaScript:开发环境和工具 Apr 26, 2025 am 12:09 AM

Python和JavaScript在开发环境上的选择都很重要。1)Python的开发环境包括PyCharm、JupyterNotebook和Anaconda,适合数据科学和快速原型开发。2)JavaScript的开发环境包括Node.js、VSCode和Webpack,适用于前端和后端开发。根据项目需求选择合适的工具可以提高开发效率和项目成功率。

C/C在JavaScript口译员和编译器中的作用 C/C在JavaScript口译员和编译器中的作用 Apr 20, 2025 am 12:01 AM

C和C 在JavaScript引擎中扮演了至关重要的角色,主要用于实现解释器和JIT编译器。 1)C 用于解析JavaScript源码并生成抽象语法树。 2)C 负责生成和执行字节码。 3)C 实现JIT编译器,在运行时优化和编译热点代码,显着提高JavaScript的执行效率。

See all articles