从 Pandas Dataframe 中删除行
在 Pandas 中,我们经常遇到需要从 DataFrame 中删除某些行的情况,或者用于数据清理目的或专注于特定子集。实现此目的的一种有效方法是利用 drop 函数,它允许我们根据各种条件有选择地删除行。
为了演示该过程,让我们考虑一个数据帧 df:
<code class="python">import pandas as pd df = pd.DataFrame({'sales': [2.709, 6.590, 10.103, 15.915, 3.196, 7.907], 'discount': [None, None, None, None, None, None], 'net_sales': [2.709, 6.590, 10.103, 15.915, 3.196, 7.907], 'cogs': [2.245, 5.291, 7.981, 12.686, 2.710, 6.459]}) print(df) </code>
现在,假设我们要删除具有某些序列号的行,用列表表示,例如 [1, 2, 4]。为此,我们可以使用 drop 函数,如下所示:
<code class="python">indices_to_drop = [1, 2, 4]</code>
<code class="python">conditions_to_drop = df['sales'] > 10 df = df[~conditions_to_drop]</code>
通过在 drop 中指定索引参数,我们可以有效地删除与提供的索引对应的行,留下所需的子集:
<code class="python">df = df.drop(index=indices_to_drop) print(df)</code>
在这种情况下,它将产生以下数据框:
sales discount net_sales cogs STK_ID RPT_Date 600141 20060331 2.709 NaN 2.709 2.245 20061231 15.915 NaN 15.915 12.686 20070630 7.907 NaN 7.907 6.459
以上是如何根据索引或条件从 Pandas 数据框中删除行?的详细内容。更多信息请关注PHP中文网其他相关文章!