在 PyTorch 中展开
请我喝杯咖啡☕
*备忘录:
- 我的帖子解释了 unflatten()。
- 我的帖子解释了 flatten() 和 ravel()。
- 我的帖子解释了 Flatten()。
Unflatten() 可以向零个或多个元素的一维或多个 D 张量添加零个或多个维度,得到零个或多个元素的一维或多个 D 张量,如下所示:
*备忘录:
- 初始化的第一个参数是dim(Required-Type:int)。
- 初始化的第二个参数是 unflattened_size(必需类型:元组或 int 列表)。
- 第一个参数是输入(必需类型:int、float、complex 或 bool 的张量)。 *-1 推断并调整大小。
- Unflatten() 和 unflatten() 的区别是:
- Unflatten() 具有 unflattened_size 参数,该参数与 unflatten() 的 size 参数相同。
- 基本上,Unflatten() 用于定义模型,而 unflatten() 不用于定义模型。
import torch from torch import nn unflatten = nn.Unflatten() unflatten # Unflatten(dim=0, unflattened_size=(6,)) unflatten.dim # 0 unflatten.unflattened_size # (6,) my_tensor = torch.tensor([7, 1, -8, 3, -6, 0]) unflatten = nn.Unflatten(dim=0, unflattened_size=(6,)) unflatten = nn.Unflatten(dim=0, unflattened_size=(-1,)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(6,)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1,)) unflatten(input=my_tensor) # tensor([7, 1, -8, 3, -6, 0]) unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 6)) unflatten = nn.Unflatten(dim=0, unflattened_size=(-1, 6)) unflatten = nn.Unflatten(dim=0, unflattened_size=(1, -1)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 6)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1, 6)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, -1)) unflatten(input=my_tensor) # tensor([[7, 1, -8, 3, -6, 0]]) unflatten = nn.Unflatten(dim=0, unflattened_size=(2, 3)) unflatten = nn.Unflatten(dim=0, unflattened_size=(2, -1)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(2, 3)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(2, -1)) unflatten(input=my_tensor) # tensor([[7, 1, -8], [3, -6, 0]]) unflatten = nn.Unflatten(dim=0, unflattened_size=(3, 2)) unflatten = nn.Unflatten(dim=0, unflattened_size=(3, -1)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(3, 2)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(3, -1)) unflatten(input=my_tensor) # tensor([[7, 1], [-8, 3], [-6, 0]]) unflatten = nn.Unflatten(dim=0, unflattened_size=(6, 1)) unflatten = nn.Unflatten(dim=0, unflattened_size=(6, -1)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(6, 1)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(6, -1)) unflatten(input=my_tensor) # tensor([[7], [1], [-8], [3], [-6], [0]]) unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 2, 3)) unflatten = nn.Unflatten(dim=0, unflattened_size=(-1, 2, 3)) unflatten = nn.Unflatten(dim=0, unflattened_size=(1, -1, 3)) unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 2, -1)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 2, 3)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1, 2, 3)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, -1, 3)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 2, -1)) unflatten(input=my_tensor) # tensor([[[7, 1, -8], [3, -6, 0]]]) etc my_tensor = torch.tensor([[7, 1, -8], [3, -6, 0]]) unflatten = nn.Unflatten(dim=0, unflattened_size=(2,)) unflatten = nn.Unflatten(dim=0, unflattened_size=(-1,)) unflatten = nn.Unflatten(dim=1, unflattened_size=(3,)) unflatten = nn.Unflatten(dim=1, unflattened_size=(-1,)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(3,)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1,)) unflatten = nn.Unflatten(dim=-2, unflattened_size=(2,)) unflatten = nn.Unflatten(dim=-2, unflattened_size=(-1,)) unflatten(input=my_tensor) # tensor([[7, 1, -8], [3, -6, 0]]) unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 2)) unflatten = nn.Unflatten(dim=0, unflattened_size=(-1, 2)) unflatten = nn.Unflatten(dim=-2, unflattened_size=(1, 2)) unflatten = nn.Unflatten(dim=-2, unflattened_size=(-1, 2)) unflatten(input=my_tensor) # tensor([[[7, 1, -8], [3, -6, 0]]]) unflatten = nn.Unflatten(dim=0, unflattened_size=(2, 1)) unflatten = nn.Unflatten(dim=0, unflattened_size=(2, -1)) unflatten = nn.Unflatten(dim=1, unflattened_size=(1, 3)) unflatten = nn.Unflatten(dim=1, unflattened_size=(-1, 3)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 3)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1, 3)) unflatten = nn.Unflatten(dim=-2, unflattened_size=(2, 1)) unflatten = nn.Unflatten(dim=-2, unflattened_size=(2, -1)) unflatten(input=my_tensor) # tensor([[[7, 1, -8]], [[3, -6, 0]]]) unflatten = nn.Unflatten(dim=1, unflattened_size=(3, 1)) unflatten = nn.Unflatten(dim=1, unflattened_size=(3, -1)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(3, 1)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(3, -1)) unflatten(input=my_tensor) # tensor([[[7], [1], [-8]], [[3], [-6], [0]]]) unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 1, 2)) unflatten = nn.Unflatten(dim=0, unflattened_size=(-1, 1, 2)) unflatten = nn.Unflatten(dim=0, unflattened_size=(1, -1, 2)) unflatten = nn.Unflatten(dim=0, unflattened_size=(1, 1, -1)) unflatten = nn.Unflatten(dim=-2, unflattened_size=(1, 1, 2)) unflatten = nn.Unflatten(dim=-2, unflattened_size=(-1, 1, 2)) unflatten = nn.Unflatten(dim=-2, unflattened_size=(1, -1, 2)) unflatten = nn.Unflatten(dim=-2, unflattened_size=(1, 1, -1)) unflatten(input=my_tensor) # tensor([[[[7, 1, -8], [3, -6, 0]]]]) unflatten = nn.Unflatten(dim=1, unflattened_size=(1, 1, 3)) unflatten = nn.Unflatten(dim=1, unflattened_size=(-1, 1, 3)) unflatten = nn.Unflatten(dim=1, unflattened_size=(1, -1, 3)) unflatten = nn.Unflatten(dim=1, unflattened_size=(1, 1, -1)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 1, 3)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(-1, 1, 3)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, -1, 3)) unflatten = nn.Unflatten(dim=-1, unflattened_size=(1, 1, -1)) unflatten(input=my_tensor) # tensor([[[[7, 1, -8]]], [[[3, -6, 0]]]]) my_tensor = torch.tensor([[7., 1., -8.], [3., -6., 0.]]) unflatten = nn.Unflatten(dim=0, unflattened_size=(2,)) unflatten(input=my_tensor) # tensor([[7., 1., -8.], [3., -6., 0.]]) my_tensor = torch.tensor([[7.+0.j, 1.+0.j, -8.+0.j], [3.+0.j, -6.+0.j, 0.+0.j]]) unflatten = nn.Unflatten(dim=0, unflattened_size=(2,)) unflatten(input=my_tensor) # tensor([[7.+0.j, 1.+0.j, -8.+0.j], # [3.+0.j, -6.+0.j, 0.+0.j]]) my_tensor = torch.tensor([[True, False, True], [False, True, False]]) unflatten = nn.Unflatten(dim=0, unflattened_size=(2,)) unflatten(input=my_tensor) # tensor([[True, False, True], [False, True, False]])
以上是在 PyTorch 中展开的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优
