如何在编译时检测CPU架构?
在编译时确定 CPU 架构
识别 CPU 架构对于代码优化和特定于硬件的操作至关重要。然而,不同的编译器为此目的使用不同的预处理器定义,例如 MSVS 的“_M_X86”和 GCC 的“__i386__”。
是否有架构检测的标准方法?
遗憾的是,在编译过程中没有确定CPU架构的标准方法。编译器实现自己的方法来表示此信息。
架构定义的综合列表
虽然不存在标准化的定义列表,但有多种资源可用于帮助识别与特定编译器相关的定义:
- 编译器文档:有关支持的预处理器定义的信息,请参阅特定编译器的文档。
- 在线资源:“Github.com”或“Stack Overflow”等网站通常提供有关特定于编译器的架构定义的见解。
架构检测的综合代码示例
以下代码片段提供了一种在编译期间确定 CPU 架构的综合方法,涵盖了各种架构:
extern "C" { const char *getBuild() { //Get current architecture, detectx nearly every architecture. Coded by Freak #if defined(__x86_64__) || defined(_M_X64) return "x86_64"; #elif defined(i386) || defined(__i386__) || defined(__i386) || defined(_M_IX86) return "x86_32"; #elif defined(__ARM_ARCH_2__) return "ARM2"; #elif defined(__ARM_ARCH_3__) || defined(__ARM_ARCH_3M__) return "ARM3"; #elif defined(__ARM_ARCH_4T__) || defined(__TARGET_ARM_4T) return "ARM4T"; #elif defined(__ARM_ARCH_5_) || defined(__ARM_ARCH_5E_) return "ARM5" #elif defined(__ARM_ARCH_6T2_) || defined(__ARM_ARCH_6T2_) return "ARM6T2"; #elif defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) return "ARM6"; #elif defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) return "ARM7"; #elif defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) return "ARM7A"; #elif defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) return "ARM7R"; #elif defined(__ARM_ARCH_7M__) return "ARM7M"; #elif defined(__ARM_ARCH_7S__) return "ARM7S"; #elif defined(__aarch64__) || defined(_M_ARM64) return "ARM64"; #elif defined(mips) || defined(__mips__) || defined(__mips) return "MIPS"; #elif defined(__sh__) return "SUPERH"; #elif defined(__powerpc) || defined(__powerpc__) || defined(__powerpc64__) || defined(__POWERPC__) || defined(__ppc__) || defined(__PPC__) || defined(_ARCH_PPC) return "POWERPC"; #elif defined(__PPC64__) || defined(__ppc64__) || defined(_ARCH_PPC64) return "POWERPC64"; #elif defined(__sparc__) || defined(__sparc) return "SPARC"; #elif defined(__m68k__) return "M68K"; #else return "UNKNOWN"; #endif } }
以上是如何在编译时检测CPU架构?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

C#和C 的历史与演变各有特色,未来前景也不同。1.C 由BjarneStroustrup在1983年发明,旨在将面向对象编程引入C语言,其演变历程包括多次标准化,如C 11引入auto关键字和lambda表达式,C 20引入概念和协程,未来将专注于性能和系统级编程。2.C#由微软在2000年发布,结合C 和Java的优点,其演变注重简洁性和生产力,如C#2.0引入泛型,C#5.0引入异步编程,未来将专注于开发者的生产力和云计算。

C#和C 的学习曲线和开发者体验有显着差异。 1)C#的学习曲线较平缓,适合快速开发和企业级应用。 2)C 的学习曲线较陡峭,适用于高性能和低级控制的场景。

静态分析在C 中的应用主要包括发现内存管理问题、检查代码逻辑错误和提高代码安全性。1)静态分析可以识别内存泄漏、双重释放和未初始化指针等问题。2)它能检测未使用变量、死代码和逻辑矛盾。3)静态分析工具如Coverity能发现缓冲区溢出、整数溢出和不安全API调用,提升代码安全性。

C 通过第三方库(如TinyXML、Pugixml、Xerces-C )与XML交互。1)使用库解析XML文件,将其转换为C 可处理的数据结构。2)生成XML时,将C 数据结构转换为XML格式。3)在实际应用中,XML常用于配置文件和数据交换,提升开发效率。

使用C 中的chrono库可以让你更加精确地控制时间和时间间隔,让我们来探讨一下这个库的魅力所在吧。C 的chrono库是标准库的一部分,它提供了一种现代化的方式来处理时间和时间间隔。对于那些曾经饱受time.h和ctime折磨的程序员来说,chrono无疑是一个福音。它不仅提高了代码的可读性和可维护性,还提供了更高的精度和灵活性。让我们从基础开始,chrono库主要包括以下几个关键组件:std::chrono::system_clock:表示系统时钟,用于获取当前时间。std::chron

C 的未来将专注于并行计算、安全性、模块化和AI/机器学习领域:1)并行计算将通过协程等特性得到增强;2)安全性将通过更严格的类型检查和内存管理机制提升;3)模块化将简化代码组织和编译;4)AI和机器学习将促使C 适应新需求,如数值计算和GPU编程支持。

1)c relevantduetoItsAverity and效率和效果临界。2)theLanguageIsconTinuellyUped,withc 20introducingFeaturesFeaturesLikeTuresLikeSlikeModeLeslikeMeSandIntIneStoImproutiMimproutimprouteverusabilityandperformance.3)

C#使用自动垃圾回收机制,而C 采用手动内存管理。1.C#的垃圾回收器自动管理内存,减少内存泄漏风险,但可能导致性能下降。2.C 提供灵活的内存控制,适合需要精细管理的应用,但需谨慎处理以避免内存泄漏。
