如何在 Pandas 中将宽数据转换为长格式?
在 Pandas 中将宽数据重塑为长格式
在数据操作领域,将数据从宽格式重塑为长格式通常会出现为必要性。考虑以下 pandas 数据框:
AA | BB | CC | |
---|---|---|---|
05/03 | 1 | 2 | 3 |
06/03 | 4 | 5 | 6 |
07/03 | 7 | 8 | 9 |
08/03 | 5 | 7 | 1 |
将其转换为所需的长格式:
| AA | 05/03 | 1 |
| AA | 06/03 | 4 |
| AA | 07/03 | 7 |
| AA | 08/03 | 5 |
| BB | 05/03 | 2 |
| BB | 06/03 | 5 |
| BB | 07/03 | 8 |
| BB | 08/03 | 7 |
|抄送 | 05/03 | 3 |
|抄送 | 06/03 | 6 |
|抄送 | 07/03 | 9 |
|抄送 | 08/03 | 1 |
我们使用 pandas.melt 或 pandas.DataFrame.melt 函数,它可以优雅地将宽数据转换为长格式。
import pandas as pd df = pd.DataFrame({ 'date' : ['05/03', '06/03', '07/03', '08/03'], 'AA' : [1, 4, 7, 5], 'BB' : [2, 5, 8, 7], 'CC' : [3, 6, 9, 1] }).set_index('date') df = df.reset_index() pd.melt(df, id_vars='date', value_vars=['AA', 'BB', 'CC'])
或者,可以通过调用省略 reset_index 步骤使用ignore_index=False:
dfm = df.melt(ignore_index=False).reset_index()
融化,得到所需的长格式:
date | variable | value | |
---|---|---|---|
0 | 05/03 | AA | 1 |
1 | 06/03 | AA | 4 |
2 | 07/03 | AA | 7 |
3 | 08/03 | AA | 5 |
4 | 05/03 | BB | 2 |
5 | 06/03 | BB | 5 |
6 | 07/03 | BB | 8 |
7 | 08/03 | BB | 7 |
8 | 05/03 | CC | 3 |
9 | 06/03 | CC | 6 |
10 | 07/03 | CC | 9 |
11 | 08/03 | CC | 1 |
此转换可以根据共享日期和列名称与其他数据帧进行高效合并。
以上是如何在 Pandas 中将宽数据转换为长格式?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。
