将 Gemini 与 OpenAI 库结合使用
基于本文,我们现在可以将 Gemini 与 OpenAI 库一起使用。所以,我决定在这篇文章中尝试一下
目前仅提供聊天完成 API 和嵌入 API。
在本文中,我尝试使用 Python 和 JavaScript。
Python
首先,我们来搭建环境。
pip install openai python-dotenv
接下来,让我们运行以下代码。
import os from dotenv import load_dotenv from openai import OpenAI load_dotenv() GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") client = OpenAI( api_key=GOOGLE_API_KEY, base_url="https://generativelanguage.googleapis.com/v1beta/" ) response = client.chat.completions.create( model="gemini-1.5-flash", n=1, messages=[ {"role": "system", "content": "You are a helpful assistant."}, { "role": "user", "content": "Explain briefly(less than 30 words) to me how AI works." } ] ) print(response.choices[0].message.content)
返回了以下响应。
AI mimics human intelligence by learning patterns from data, using algorithms to solve problems and make decisions.
在内容字段中,您可以指定字符串或“类型”:“文本”。
import os from dotenv import load_dotenv from openai import OpenAI load_dotenv() GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") client = OpenAI( api_key=GOOGLE_API_KEY, base_url="https://generativelanguage.googleapis.com/v1beta/" ) response = client.chat.completions.create( model="gemini-1.5-flash", n=1, messages=[ {"role": "system", "content": "You are a helpful assistant."}, { "role": "user", "content": [ { "type": "text", "text": "Explain briefly(less than 30 words) to me how AI works.", }, ] } ] ) print(response.choices[0].message.content)
但是,图像和音频输入出现错误。
图像输入示例代码
import os from dotenv import load_dotenv from openai import OpenAI load_dotenv() GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") client = OpenAI( api_key=GOOGLE_API_KEY, base_url="https://generativelanguage.googleapis.com/v1beta/" ) # png to base64 text import base64 with open("test.png", "rb") as image: b64str = base64.b64encode(image.read()).decode("utf-8") response = client.chat.completions.create( model="gemini-1.5-flash", # model="gpt-4o", n=1, messages=[ {"role": "system", "content": "You are a helpful assistant."}, { "role": "user", "content": [ { "type": "text", "text": "Describe the image in the image below.", }, { "type": "image_url", "image_url": { "url": f"data:image/png;base64,{b64str}" } } ] } ] ) print(response.choices[0].message.content)
音频输入示例代码
import os from dotenv import load_dotenv from openai import OpenAI load_dotenv() GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") client = OpenAI( api_key=GOOGLE_API_KEY, base_url="https://generativelanguage.googleapis.com/v1beta/" ) # png to base64 text import base64 with open("test.wav", "rb") as audio: b64str = base64.b64encode(audio.read()).decode("utf-8") response = client.chat.completions.create( model="gemini-1.5-flash", # model="gpt-4o-audio-preview", n=1, modalities=["text"], messages=[ {"role": "system", "content": "You are a helpful assistant."}, { "role": "user", "content": [ { "type": "text", "text": "What does he say?", }, { "type": "input_audio", "input_audio": { "data": b64str, "format": "wav", } } ] } ] ) print(response.choices[0].message.content)
返回了以下错误响应。
openai.BadRequestError: Error code: 400 - [{'error': {'code': 400, 'message': 'Request contains an invalid argument.', 'status': 'INVALID_ARGUMENT'}}]
目前仅支持文字输入,不过后续似乎会支持图片和音频输入。
JavaScript
让我们看一下 JavaScript 示例代码。
首先,我们来搭建环境。
npm init -y npm install openai npm pkg set type=module
接下来,让我们运行以下代码。
import OpenAI from "openai"; const GOOGLE_API_KEY = process.env.GOOGLE_API_KEY; const openai = new OpenAI({ apiKey: GOOGLE_API_KEY, baseURL: "https://generativelanguage.googleapis.com/v1beta/" }); const response = await openai.chat.completions.create({ model: "gemini-1.5-flash", messages: [ { role: "system", content: "You are a helpful assistant." }, { role: "user", content: "Explain briefly(less than 30 words) to me how AI works", }, ], }); console.log(response.choices[0].message.content);
运行代码时,请确保在 .env 文件中包含 API 密钥。 .env 文件将在运行时加载。
node --env-file=.env run.js
返回了以下响应。
AI systems learn from data, identify patterns, and make predictions or decisions based on those patterns.
我们可以在同一个库中使用其他模型,这真是太棒了。
就我个人而言,我对此感到很高兴,因为 OpenAI 使编辑对话历史记录变得更加容易。
以上是将 Gemini 与 OpenAI 库结合使用的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优
